5.6.7 Problems 601 to 700

Table 5.559: Second order non-linear ODE

#

ODE

Mathematica

Maple

17991

\[ {}{y^{\prime \prime }}^{2}+2 x y^{\prime \prime }-y^{\prime } = 0 \]

17992

\[ {}{y^{\prime \prime }}^{2}-2 x y^{\prime \prime }-y^{\prime } = 0 \]

18043

\[ {}y^{\prime \prime } = y^{2}+x \]

18044

\[ {}y^{\prime \prime }+2 y^{\prime }+y^{2} = 0 \]

18187

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

18188

\[ {}x y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{3} \]

18190

\[ {}x^{2} y^{\prime \prime } = 2 x y^{\prime }+{y^{\prime }}^{2} \]

18191

\[ {}2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

18192

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

18194

\[ {}\left (x^{2}+2 y^{\prime }\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]

18195

\[ {}y y^{\prime \prime } = y^{\prime } y^{2}+{y^{\prime }}^{2} \]

18196

\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \]

18197

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

18198

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

18199

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \]

18205

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-2 y y^{\prime } = 0 \]

18209

\[ {}y^{\prime \prime }+2 x {y^{\prime }}^{2} = 0 \]

18222

\[ {}\left (x \,{\mathrm e}^{y}+y-x^{2}\right ) y^{\prime \prime } = 2 x y-{\mathrm e}^{y}-x \]

18233

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (3 x -2 y^{\prime }\right ) \]

18239

\[ {}y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

18244

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

18247

\[ {}y^{\prime \prime } = 2 y {y^{\prime }}^{3} \]

18270

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

18487

\[ {}x^{\prime \prime }+\left (5 x^{4}-9 x^{2}\right ) x^{\prime }+x^{5} = 0 \]

18531

\[ {}x^{2} y^{\prime \prime }-\frac {x^{2} {y^{\prime }}^{2}}{2 y}+4 x y^{\prime }+4 y = 0 \]

18536

\[ {}v^{\prime \prime } = \left (\frac {1}{v}+{v^{\prime }}^{4}\right )^{{1}/{3}} \]

18538

\[ {}\sqrt {y^{\prime }+y} = \left (y^{\prime \prime }+2 x \right )^{{1}/{4}} \]

18567

\[ {}y^{\prime \prime } = \frac {m \sqrt {1+{y^{\prime }}^{2}}}{k} \]

18568

\[ {}\phi ^{\prime \prime } = \frac {4 \pi n c}{\sqrt {v_{0}^{2}+\frac {2 e \left (\phi -V_{0} \right )}{m}}} \]

18596

\[ {}y^{\prime \prime } = c \left (1+{y^{\prime }}^{2}\right ) \]

18597

\[ {}y^{\prime \prime } = c \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

18600

\[ {}1+{y^{\prime }}^{2}+\frac {m y^{\prime \prime }}{\sqrt {1+{y^{\prime }}^{2}}} = 0 \]

18609

\[ {}y^{\prime \prime }-2 y y^{\prime } = 0 \]

18610

\[ {}y^{\prime \prime }-{y^{\prime }}^{2}-y {y^{\prime }}^{3} = 0 \]

18611

\[ {}\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = r y^{\prime \prime } \]

18613

\[ {}\left (1+y^{2}\right ) y^{\prime \prime }-2 y {y^{\prime }}^{2}-2 \left (1+y^{2}\right ) y^{\prime } = y^{2} \left (1+y^{2}\right ) \]

18701

\[ {}y^{\prime \prime } = \frac {1}{y^{2}} \]

18702

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

18703

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 1 \]

18704

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-1-{y^{\prime }}^{2} = 0 \]

18952

\[ {}y^{\prime \prime } y^{\prime }-x^{2} y y^{\prime } = x y^{2} \]

18953

\[ {}x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2}-3 y^{2} = 0 \]

18958

\[ {}y^{\prime \prime } = \frac {1}{\sqrt {a y}} \]

18959

\[ {}y^{\prime \prime }+\frac {a^{2}}{y^{2}} = 0 \]

18960

\[ {}y^{\prime \prime }-\frac {a^{2}}{y^{2}} = 0 \]

18962

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

18963

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

18965

\[ {}y^{\prime \prime }-a {y^{\prime }}^{2} = 0 \]

18966

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

18967

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right ) \]

18968

\[ {}y^{\prime \prime }+2 y^{\prime }+4 {y^{\prime }}^{3} = 0 \]

18972

\[ {}a^{2} y^{\prime \prime } y^{\prime } = x \]

18973

\[ {}a y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

18982

\[ {}\left (y^{2}+2 x^{2} y^{\prime }\right ) y^{\prime \prime }+2 \left (x +y\right ) {y^{\prime }}^{2}+x y^{\prime }+y = 0 \]

18987

\[ {}{y^{\prime }}^{2}-y y^{\prime \prime } = n \sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} \]

18989

\[ {}y^{\prime \prime }+y^{\prime }+{y^{\prime }}^{3} = 0 \]

18994

\[ {}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

19000

\[ {}y^{3} y^{\prime \prime } = a \]

19002

\[ {}y^{\prime \prime } = a^{2}+k^{2} {y^{\prime }}^{2} \]

19008

\[ {}a^{2} {y^{\prime \prime }}^{2} = 1+{y^{\prime }}^{2} \]

19033

\[ {}x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2} = 0 \]

19034

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

19357

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}+y y^{\prime } = 0 \]

19375

\[ {}y^{3} y^{\prime \prime } = a \]

19377

\[ {}y^{\prime \prime }+\frac {a^{2}}{y} = 0 \]

19378

\[ {}y^{\prime \prime } = y^{3}-y \]

19379

\[ {}y^{\prime \prime } = {\mathrm e}^{2 y} \]

19381

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

19388

\[ {}x y^{\prime \prime }+x {y^{\prime }}^{2}-y^{\prime } = 0 \]

19393

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

19394

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

19395

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+y^{\prime } = 0 \]

19396

\[ {}y^{\prime \prime }+2 y^{\prime }+4 {y^{\prime }}^{2} = 0 \]

19397

\[ {}y^{\prime \prime } = a {y^{\prime }}^{2} \]

19398

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

19399

\[ {}y y^{\prime \prime }+\sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} = {y^{\prime }}^{2} \]

19401

\[ {}a^{2} y^{\prime \prime } y^{\prime } = x \]

19403

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

19404

\[ {}a y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

19405

\[ {}y^{\prime \prime } = a^{2}+k^{2} {y^{\prime }}^{2} \]

19406

\[ {}a^{2} {y^{\prime \prime }}^{2} = 1+{y^{\prime }}^{2} \]

19407

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

19408

\[ {}y^{\prime } = x y^{\prime \prime }+\sqrt {1+{y^{\prime }}^{2}} \]

19415

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2} = 3 y y^{\prime } \]

19416

\[ {}2 x^{2} y y^{\prime \prime }+y^{2} = x^{2} {y^{\prime }}^{2} \]

19417

\[ {}x^{2} y^{\prime \prime } = \sqrt {m \,x^{2} {y^{\prime }}^{3}+y^{2} n} \]

19418

\[ {}x^{4} y^{\prime \prime } = \left (x^{3}+2 x y\right ) y^{\prime }-4 y^{2} \]

19419

\[ {}x^{4} y^{\prime \prime }-x^{3} y^{\prime } = x^{2} {y^{\prime }}^{2}-4 y^{2} \]

19420

\[ {}x^{2} y^{\prime \prime }+4 y^{2}-6 y = x^{4} {y^{\prime }}^{2} \]

19421

\[ {}y^{\prime \prime } = {\mathrm e}^{y} \]

19426

\[ {}y^{\prime \prime } = \frac {1}{\sqrt {a y}} \]

19428

\[ {}-a y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

19429

\[ {}\sin \left (y\right )^{3} y^{\prime \prime } = \cos \left (y\right ) \]

19433

\[ {}y y^{\prime \prime }+\sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} = {y^{\prime }}^{2} \]

19481

\[ {}x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2} = 0 \]

19590

\[ {}2 x^{2} y y^{\prime \prime }+4 y^{2} = x^{2} {y^{\prime }}^{2}+2 x y y^{\prime } \]

19598

\[ {}2 x^{2} \cos \left (y\right ) y^{\prime \prime }-2 x^{2} \sin \left (y\right ) {y^{\prime }}^{2}+x \cos \left (y\right ) y^{\prime }-\sin \left (y\right ) = \ln \left (x \right ) \]

19599

\[ {}x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2}-3 y^{2} = 0 \]

19600

\[ {}y+3 x y^{\prime }+2 y {y^{\prime }}^{2}+\left (x^{2}+2 y^{\prime } y^{2}\right ) y^{\prime \prime } = 0 \]

19601

\[ {}\left (y^{2}+2 x^{2} y^{\prime }\right ) y^{\prime \prime }+2 \left (x +y\right ) {y^{\prime }}^{2}+x y^{\prime }+y = 0 \]