5.1.9 Problems 801 to 900

Table 5.17: First order ode

#

ODE

Mathematica

Maple

2358

\[ {}y^{\prime } = \frac {\left (1+\cos \left (4 t \right )\right ) y}{4}-\frac {\left (1-\cos \left (4 t \right )\right ) y^{2}}{800} \]

2359

\[ {}y^{\prime } = t^{2}+y^{2} \]

2360

\[ {}y^{\prime } = t \left (y+1\right ) \]

2361

\[ {}y^{\prime } = t \sqrt {1-y^{2}} \]

2472

\[ {}\cos \left (t \right ) y+y^{\prime } = 0 \]

2473

\[ {}\sqrt {t}\, \sin \left (t \right ) y+y^{\prime } = 0 \]

2474

\[ {}\frac {2 t y}{t^{2}+1}+y^{\prime } = \frac {1}{t^{2}+1} \]

2475

\[ {}y+y^{\prime } = {\mathrm e}^{t} t \]

2476

\[ {}t^{2} y+y^{\prime } = 1 \]

2477

\[ {}t^{2} y+y^{\prime } = t^{2} \]

2478

\[ {}\frac {t y}{t^{2}+1}+y^{\prime } = 1-\frac {t^{3} y}{t^{4}+1} \]

2479

\[ {}\sqrt {t^{2}+1}\, y+y^{\prime } = 0 \]

2480

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]

2481

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]

2482

\[ {}y^{\prime }-2 t y = t \]

2483

\[ {}t y+y^{\prime } = t +1 \]

2484

\[ {}y+y^{\prime } = \frac {1}{t^{2}+1} \]

2485

\[ {}y^{\prime }-2 t y = 1 \]

2486

\[ {}t y+\left (t^{2}+1\right ) y^{\prime } = \left (t^{2}+1\right )^{{5}/{2}} \]

2487

\[ {}4 t y+\left (t^{2}+1\right ) y^{\prime } = t \]

2488

\[ {}y+y^{\prime } = \left \{\begin {array}{cc} 2 & 0\le t \le 1 \\ 0 & 1<t \end {array}\right . \]

2489

\[ {}\left (t^{2}+1\right ) y^{\prime } = 1+y^{2} \]

2490

\[ {}y^{\prime } = \left (t +1\right ) \left (y+1\right ) \]

2491

\[ {}y^{\prime } = 1-t +y^{2}-t y^{2} \]

2492

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

2493

\[ {}\cos \left (y\right ) \sin \left (t \right ) y^{\prime } = \cos \left (t \right ) \sin \left (y\right ) \]

2494

\[ {}t^{2} \left (1+y^{2}\right )+2 y y^{\prime } = 0 \]

2495

\[ {}y^{\prime } = \frac {2 t}{y+t^{2} y} \]

2496

\[ {}\sqrt {1+y^{2}}\, y^{\prime } = \frac {t y^{3}}{\sqrt {t^{2}+1}} \]

2497

\[ {}y^{\prime } = \frac {3 t^{2}+4 t +2}{-2+2 y} \]

2498

\[ {}\cos \left (y\right ) y^{\prime } = -\frac {t \sin \left (y\right )}{t^{2}+1} \]

2499

\[ {}y^{\prime } = k \left (a -y\right ) \left (b -y\right ) \]

2500

\[ {}3 t y^{\prime } = \cos \left (t \right ) y \]

2501

\[ {}y^{\prime } = \frac {2 y}{t}+\frac {y^{2}}{t^{2}} \]

2502

\[ {}t y^{\prime } = y+\sqrt {t^{2}+y^{2}} \]

2503

\[ {}2 t y y^{\prime } = 3 y^{2}-t^{2} \]

2504

\[ {}\left (t -\sqrt {t y}\right ) y^{\prime } = y \]

2505

\[ {}y^{\prime } = \frac {y+t}{t -y} \]

2506

\[ {}{\mathrm e}^{\frac {t}{y}} \left (y-t \right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0 \]

2507

\[ {}y^{\prime } = \frac {t +y+1}{t -y+3} \]

2508

\[ {}1+t -2 y+\left (4 t -3 y-6\right ) y^{\prime } = 0 \]

2509

\[ {}t +2 y+3+\left (2 t +4 y-1\right ) y^{\prime } = 0 \]

2510

\[ {}2 t \sin \left (y\right )+{\mathrm e}^{t} y^{3}+\left (t^{2} \cos \left (y\right )+3 \,{\mathrm e}^{t} y^{2}\right ) y^{\prime } = 0 \]

2511

\[ {}1+{\mathrm e}^{t y} \left (1+t y\right )+\left (1+{\mathrm e}^{t y} t^{2}\right ) y^{\prime } = 0 \]

2512

\[ {}\sec \left (t \right ) \tan \left (t \right )+\sec \left (t \right )^{2} y+\left (\tan \left (t \right )+2 y\right ) y^{\prime } = 0 \]

2513

\[ {}\frac {y^{2}}{2}-2 \,{\mathrm e}^{t} y+\left (-{\mathrm e}^{t}+y\right ) y^{\prime } = 0 \]

2514

\[ {}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0 \]

2515

\[ {}2 t \cos \left (y\right )+3 t^{2} y+\left (2 t^{2}+2 y\right ) y^{\prime } = 0 \]

2516

\[ {}3 t^{2}+4 t y+\left (2 t^{2}+2 y\right ) y^{\prime } = 0 \]

2517

\[ {}2 t -2 \,{\mathrm e}^{t y} \sin \left (2 t \right )+{\mathrm e}^{t y} \cos \left (2 t \right ) y+\left (-3+{\mathrm e}^{t y} t \cos \left (2 t \right )\right ) y^{\prime } = 0 \]

2518

\[ {}3 t y+y^{2}+\left (t^{2}+t y\right ) y^{\prime } = 0 \]

2519

\[ {}y^{\prime } = 2 t \left (y+1\right ) \]

2520

\[ {}y^{\prime } = t^{2}+y^{2} \]

2521

\[ {}y^{\prime } = {\mathrm e}^{t}+y^{2} \]

2522

\[ {}y^{\prime } = y^{2}+\cos \left (t \right )^{2} \]

2523

\[ {}y^{\prime } = 1+y+y^{2} \cos \left (t \right ) \]

2524

\[ {}y^{\prime } = t +y^{2} \]

2525

\[ {}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2526

\[ {}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2527

\[ {}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2528

\[ {}y^{\prime } = y+{\mathrm e}^{-y}+{\mathrm e}^{-t} \]

2529

\[ {}y^{\prime } = y^{3}+{\mathrm e}^{-5 t} \]

2530

\[ {}y^{\prime } = {\mathrm e}^{\left (y-t \right )^{2}} \]

2531

\[ {}y^{\prime } = \left (4 y+{\mathrm e}^{-t^{2}}\right ) {\mathrm e}^{2 y} \]

2532

\[ {}y^{\prime } = {\mathrm e}^{-t}+\ln \left (1+y^{2}\right ) \]

2533

\[ {}y^{\prime } = \frac {\left (1+\cos \left (4 t \right )\right ) y}{4}-\frac {\left (1-\cos \left (4 t \right )\right ) y^{2}}{800} \]

2534

\[ {}y^{\prime } = t^{2}+y^{2} \]

2535

\[ {}y^{\prime } = t \left (y+1\right ) \]

2536

\[ {}y^{\prime } = t y^{a} \]

2537

\[ {}y^{\prime } = t \sqrt {1-y^{2}} \]

2538

\[ {}y^{\prime } = y+{\mathrm e}^{-y}+2 t \]

2539

\[ {}y^{\prime } = 1-t +y^{2} \]

2540

\[ {}y^{\prime } = \frac {t^{2}+y^{2}}{1+t +y^{2}} \]

2541

\[ {}y^{\prime } = {\mathrm e}^{t} y^{2}-2 y \]

2542

\[ {}y^{\prime } = t y^{3}-y \]

2809

\[ {}x^{\prime } = x \left (1-x\right ) \]

2810

\[ {}x^{\prime } = -x \left (1-x\right ) \]

2811

\[ {}x^{\prime } = x^{2} \]

2841

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y = 0 \]

2842

\[ {}x y^{2}+x +\left (y-x^{2} y\right ) y^{\prime } = 0 \]

2843

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

2844

\[ {}x y^{\prime }+y = 0 \]

2845

\[ {}y^{\prime } = 2 x y \]

2846

\[ {}x y^{2}+x +\left (x^{2} y-y\right ) y^{\prime } = 0 \]

2847

\[ {}\sqrt {-x^{2}+1}+\sqrt {1-y^{2}}\, y^{\prime } = 0 \]

2848

\[ {}\left (1+x \right ) y^{\prime }-1+y = 0 \]

2849

\[ {}\tan \left (x \right ) y^{\prime }-y = 1 \]

2850

\[ {}y+3+\cot \left (x \right ) y^{\prime } = 0 \]

2851

\[ {}y^{\prime } = \frac {x}{y} \]

2852

\[ {}x^{\prime } = 1-\sin \left (2 t \right ) \]

2853

\[ {}x y^{\prime }+y = y^{2} \]

2854

\[ {}\sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0 \]

2855

\[ {}\sec \left (x \right ) \cos \left (y\right )^{2} = \cos \left (x \right ) \sin \left (y\right ) y^{\prime } \]

2856

\[ {}x y^{\prime }+y = x y \left (y^{\prime }-1\right ) \]

2857

\[ {}x y+\sqrt {x^{2}+1}\, y^{\prime } = 0 \]

2858

\[ {}y = x y+x^{2} y^{\prime } \]

2859

\[ {}\tan \left (x \right ) \sin \left (x \right )^{2}+\cos \left (x \right )^{2} \cot \left (y\right ) y^{\prime } = 0 \]

2860

\[ {}y^{2}+y y^{\prime }+x^{2} y y^{\prime }-1 = 0 \]

2861

\[ {}y^{\prime } = \frac {y}{x} \]

2862

\[ {}x y^{\prime }+2 y = 0 \]