5.1.10 Problems 901 to 1000

Table 5.19: First order ode

#

ODE

Mathematica

Maple

2863

\[ {}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

2864

\[ {}x^{2} y^{\prime }+y^{2} = 0 \]

2865

\[ {}y^{\prime } = {\mathrm e}^{y} \]

2866

\[ {}{\mathrm e}^{y} \left (y^{\prime }+1\right ) = 1 \]

2867

\[ {}1+y^{2} = \frac {y^{\prime }}{x^{3} \left (x -1\right )} \]

2868

\[ {}x^{2}+3 x y^{\prime } = y^{3}+2 y \]

2869

\[ {}\left (x^{2}+x +1\right ) y^{\prime } = y^{2}+2 y+5 \]

2870

\[ {}\left (x^{2}-2 x -8\right ) y^{\prime } = y^{2}+y-2 \]

2871

\[ {}x +y = x y^{\prime } \]

2872

\[ {}\left (x +y\right ) y^{\prime }+x = y \]

2873

\[ {}x y^{\prime }-y = \sqrt {x y} \]

2874

\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \]

2875

\[ {}x y^{\prime }-y = \sqrt {x^{2}-y^{2}} \]

2876

\[ {}x +y y^{\prime } = 2 y \]

2877

\[ {}x y^{\prime }-y+\sqrt {y^{2}-x^{2}} = 0 \]

2878

\[ {}x^{2}+y^{2} = x y y^{\prime } \]

2879

\[ {}\left (x y-x^{2}\right ) y^{\prime }-y^{2} = 0 \]

2880

\[ {}x y^{\prime }+y = 2 \sqrt {x y} \]

2881

\[ {}x +y+\left (x -y\right ) y^{\prime } = 0 \]

2882

\[ {}y \left (x^{2}-x y+y^{2}\right )+x y^{\prime } \left (y^{2}+x y+x^{2}\right ) = 0 \]

2883

\[ {}x y^{\prime }-y-\sin \left (\frac {y}{x}\right ) x = 0 \]

2884

\[ {}y^{\prime } = \frac {y}{x}+\cosh \left (\frac {y}{x}\right ) \]

2885

\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \]

2886

\[ {}\left (\frac {x}{y}+\frac {y}{x}\right ) y^{\prime }+1 = 0 \]

2887

\[ {}{\mathrm e}^{\frac {y}{x}} x +y = x y^{\prime } \]

2888

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

2889

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \]

2890

\[ {}\left (3 x y-2 x^{2}\right ) y^{\prime } = 2 y^{2}-x y \]

2891

\[ {}y^{\prime } = \frac {y}{x -k \sqrt {x^{2}+y^{2}}} \]

2892

\[ {}y^{2} \left (y y^{\prime }-x \right )+x^{3} = 0 \]

2893

\[ {}y^{\prime } = \frac {y}{x}+\tanh \left (\frac {y}{x}\right ) \]

2894

\[ {}x +y-\left (x -y+2\right ) y^{\prime } = 0 \]

2895

\[ {}x +\left (x -2 y+2\right ) y^{\prime } = 0 \]

2896

\[ {}2 x -y+1+\left (x +y\right ) y^{\prime } = 0 \]

2897

\[ {}x -y+2+\left (x +y-1\right ) y^{\prime } = 0 \]

2898

\[ {}x -y+\left (y-x +1\right ) y^{\prime } = 0 \]

2899

\[ {}y^{\prime } = \frac {x +y-1}{-y+x -1} \]

2900

\[ {}x +y+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]

2901

\[ {}x -y+1+\left (-y+x -1\right ) y^{\prime } = 0 \]

2902

\[ {}x +2 y+\left (3 x +6 y+3\right ) y^{\prime } = 0 \]

2903

\[ {}x +2 y+2 = \left (2 x +y-1\right ) y^{\prime } \]

2904

\[ {}3 x -y+1+\left (x -3 y-5\right ) y^{\prime } = 0 \]

2905

\[ {}6 x -3 y+6+\left (2 x -y+5\right ) y^{\prime } = 0 \]

2906

\[ {}2 x +3 y+2+\left (y-x \right ) y^{\prime } = 0 \]

2907

\[ {}x +y+4 = \left (2 x +2 y-1\right ) y^{\prime } \]

2908

\[ {}2 x +3 y-1+\left (2 x +3 y+2\right ) y^{\prime } = 0 \]

2909

\[ {}3 x -y+2+\left (x +2 y+1\right ) y^{\prime } = 0 \]

2910

\[ {}3 x +2 y+3-\left (x +2 y-1\right ) y^{\prime } = 0 \]

2911

\[ {}x -2 y+3+\left (1-x +2 y\right ) y^{\prime } = 0 \]

2912

\[ {}2 x +y+\left (4 x +2 y+1\right ) y^{\prime } = 0 \]

2913

\[ {}2 x +y+\left (4 x -2 y+1\right ) y^{\prime } = 0 \]

2914

\[ {}x +y+\left (x -2 y\right ) y^{\prime } = 0 \]

2915

\[ {}3 x +y+\left (3 y+x \right ) y^{\prime } = 0 \]

2916

\[ {}a_{1} x +b_{1} y+c_{1} +\left (b_{1} x +b_{2} y+c_{2} \right ) y^{\prime } = 0 \]

2917

\[ {}x \left (6 x y+5\right )+\left (2 x^{3}+3 y\right ) y^{\prime } = 0 \]

2918

\[ {}3 x^{2} y+x y^{2}+{\mathrm e}^{x}+\left (x^{3}+x^{2} y+\sin \left (y\right )\right ) y^{\prime } = 0 \]

2919

\[ {}2 x y-\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

2920

\[ {}y \cos \left (x \right )-2 \sin \left (y\right ) = \left (2 x \cos \left (y\right )-\sin \left (x \right )\right ) y^{\prime } \]

2921

\[ {}\frac {2 x y-1}{y}+\frac {\left (3 y+x \right ) y^{\prime }}{y^{2}} = 0 \]

2922

\[ {}y \,{\mathrm e}^{x}-2 x +{\mathrm e}^{x} y^{\prime } = 0 \]

2923

\[ {}3 y \sin \left (x \right )-\cos \left (y\right )+\left (x \sin \left (y\right )-3 \cos \left (x \right )\right ) y^{\prime } = 0 \]

2924

\[ {}x y^{2}+2 y+\left (2 y^{3}-x^{2} y+2 x \right ) y^{\prime } = 0 \]

2925

\[ {}\frac {2}{y}-\frac {y}{x^{2}}+\left (\frac {1}{x}-\frac {2 x}{y^{2}}\right ) y^{\prime } = 0 \]

2926

\[ {}\frac {x y+1}{y}+\frac {\left (-x +2 y\right ) y^{\prime }}{y^{2}} = 0 \]

2927

\[ {}\frac {y \left (2+x^{3} y\right )}{x^{3}} = \frac {\left (1-2 x^{3} y\right ) y^{\prime }}{x^{2}} \]

2928

\[ {}y^{2} \csc \left (x \right )^{2}+6 x y-2 = \left (2 y \cot \left (x \right )-3 x^{2}\right ) y^{\prime } \]

2929

\[ {}\frac {2 y}{x^{3}}+\frac {2 x}{y^{2}} = \left (\frac {1}{x^{2}}+\frac {2 x^{2}}{y^{3}}\right ) y^{\prime } \]

2930

\[ {}\cos \left (y\right )-\left (x \sin \left (y\right )-y^{2}\right ) y^{\prime } = 0 \]

2931

\[ {}2 y \sin \left (x y\right )+\left (2 x \sin \left (x y\right )+y^{3}\right ) y^{\prime } = 0 \]

2932

\[ {}\frac {x \cos \left (\frac {x}{y}\right )}{y}+\sin \left (\frac {x}{y}\right )+\cos \left (x \right )-\frac {x^{2} \cos \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

2933

\[ {}y \,{\mathrm e}^{x y}+2 x y+\left (x \,{\mathrm e}^{x y}+x^{2}\right ) y^{\prime } = 0 \]

2934

\[ {}\frac {x^{2}+3 y^{2}}{x \left (3 x^{2}+4 y^{2}\right )}+\frac {\left (2 x^{2}+y^{2}\right ) y^{\prime }}{y \left (3 x^{2}+4 y^{2}\right )} = 0 \]

2935

\[ {}\frac {x^{2}-y^{2}}{x \left (2 x^{2}+y^{2}\right )}+\frac {\left (2 y^{2}+x^{2}\right ) y^{\prime }}{y \left (2 x^{2}+y^{2}\right )} = 0 \]

2936

\[ {}\frac {2 x^{2}}{x^{2}+y^{2}}+\ln \left (x^{2}+y^{2}\right )+\frac {2 x y y^{\prime }}{x^{2}+y^{2}} = 0 \]

2937

\[ {}x y^{\prime }+\ln \left (x \right )-y = 0 \]

2938

\[ {}x y+\left (x^{2}+y\right ) y^{\prime } = 0 \]

2939

\[ {}\left (x -2 x y\right ) y^{\prime }+2 y = 0 \]

2940

\[ {}x^{2} y+y^{2}+x^{3} y^{\prime } = 0 \]

2941

\[ {}x y^{3}-1+y^{2} y^{\prime } x^{2} = 0 \]

2942

\[ {}\left (x^{3} y^{3}-1\right ) y^{\prime }+x^{2} y^{4} = 0 \]

2943

\[ {}y \left (y-x^{2}\right )+x^{3} y^{\prime } = 0 \]

2944

\[ {}y+x y^{2}+\left (x -x^{2} y\right ) y^{\prime } = 0 \]

2945

\[ {}\left (x -x \sqrt {x^{2}-y^{2}}\right ) y^{\prime }-y = 0 \]

2946

\[ {}2 x y+\left (y-x^{2}\right ) y^{\prime } = 0 \]

2947

\[ {}y = x \left (x^{2} y-1\right ) y^{\prime } \]

2948

\[ {}{\mathrm e}^{x} y^{\prime } = 2 x y^{2}+y \,{\mathrm e}^{x} \]

2949

\[ {}\left (x^{2}+y^{2}+x \right ) y^{\prime } = y \]

2950

\[ {}\left (2 x +3 x^{2} y\right ) y^{\prime }+y+2 x y^{2} = 0 \]

2951

\[ {}2 x^{2} y y^{\prime }+x^{4} {\mathrm e}^{x}-2 x y^{2} = 0 \]

2952

\[ {}y \left (1-y^{2} x^{4}\right )+x y^{\prime } = 0 \]

2953

\[ {}y \left (x^{2}-1\right )+x \left (x^{2}+1\right ) y^{\prime } = 0 \]

2954

\[ {}x^{2} y^{2}-y+\left (2 x^{3} y+x \right ) y^{\prime } = 0 \]

2955

\[ {}\left (x^{2}+y^{2}-2 y\right ) y^{\prime } = 2 x \]

2956

\[ {}y-x^{2} \sqrt {x^{2}-y^{2}}-x y^{\prime } = 0 \]

2957

\[ {}y \left (y^{2}+x \right )+x \left (x -y^{2}\right ) y^{\prime } = 0 \]

2958

\[ {}x y^{\prime }+2 y = x^{2} \]

2959

\[ {}y^{\prime }-x y = {\mathrm e}^{\frac {x^{2}}{2}} \cos \left (x \right ) \]

2960

\[ {}y^{\prime }+2 x y = 2 x \,{\mathrm e}^{-x^{2}} \]

2961

\[ {}y^{\prime } = y+3 \,{\mathrm e}^{x} x^{2} \]

2962

\[ {}x^{\prime }+x = {\mathrm e}^{-y} \]