5.11.8 Problems 701 to 793

Table 5.817: Third and higher order homogeneous ODE

#

ODE

Mathematica

Maple

18000

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime \prime }-x y^{\prime \prime }+y^{\prime } = 0 \]

18004

\[ {}y^{\prime \prime \prime }+y^{\prime } = 0 \]

18010

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 0 \]

18011

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

18012

\[ {}y^{\prime \prime \prime \prime }+4 y = 0 \]

18013

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

18015

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

18102

\[ {}2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

18357

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

18358

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0 \]

18359

\[ {}y^{\prime \prime \prime }-y = 0 \]

18360

\[ {}y^{\prime \prime \prime }+y = 0 \]

18361

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

18362

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

18363

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

18364

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

18365

\[ {}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]

18366

\[ {}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]

18367

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

18368

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

18369

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

18370

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0 \]

18371

\[ {}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+48 y^{\prime \prime }+16 y^{\prime }-96 y = 0 \]

18372

\[ {}y^{\prime \prime \prime \prime } = 0 \]

18376

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime } = 0 \]

18377

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

18378

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

18379

\[ {}x^{3} y^{\prime \prime \prime \prime }+8 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }-8 y^{\prime } = 0 \]

18584

\[ {}y^{\prime \prime \prime \prime }-a^{4} y = 0 \]

18592

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \]

18598

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

18605

\[ {}y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x} = 0 \]

18612

\[ {}y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime \prime }}^{2}+3 y^{\prime \prime } {y^{\prime }}^{2}-2 {y^{\prime }}^{4}-x {y^{\prime }}^{5} = 0 \]

18614

\[ {}y^{2} y^{\prime \prime \prime }-\left (3 y y^{\prime }+2 x y^{2}\right ) y^{\prime \prime }+\left (2 {y^{\prime }}^{2}+2 x y y^{\prime }+3 x^{2} y^{2}\right ) y^{\prime }+x^{3} y^{3} = 0 \]

18617

\[ {}x^{3} v^{\prime \prime \prime }+2 x^{2} v^{\prime \prime }+v = 0 \]

18657

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

18658

\[ {}2 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-3 y = 0 \]

18659

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

18660

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }-5 y = 0 \]

18661

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

18662

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

18663

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

18688

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

18871

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 0 \]

18872

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-9 y^{\prime \prime }-11 y^{\prime }-4 y = 0 \]

18874

\[ {}y^{\prime \prime \prime \prime }-m^{2} y = 0 \]

18875

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+8 y^{\prime \prime }-8 y^{\prime }+4 y = 0 \]

18894

\[ {}y^{\prime \prime \prime \prime }+4 y = 0 \]

18895

\[ {}y^{\left (5\right )}-13 y^{\prime \prime \prime }+26 y^{\prime \prime }+82 y^{\prime }+104 y = 0 \]

18925

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

18926

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

18935

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 x y^{\prime }-8 y = 0 \]

18937

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime }-4 y = 0 \]

18947

\[ {}x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

18969

\[ {}y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0 \]

18971

\[ {}x^{2} y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0 \]

18984

\[ {}\left (x^{3}+x +1\right ) y^{\prime \prime \prime }+\left (3+6 x \right ) y^{\prime \prime }+6 y = 0 \]

18986

\[ {}y^{\prime \prime \prime \prime }-a^{2} y^{\prime \prime } = 0 \]

18992

\[ {}x y^{\prime \prime \prime }-x y^{\prime \prime }-y^{\prime } = 0 \]

19027

\[ {}x^{2} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

19160

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

19164

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+3 y = 0 \]

19166

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

19167

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = 0 \]

19168

\[ {}y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0 \]

19169

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }-5 y = 0 \]

19170

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

19171

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

19172

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

19208

\[ {}y^{\left (5\right )}-13 y^{\prime \prime \prime }+26 y^{\prime \prime }+82 y^{\prime }+104 y = 0 \]

19317

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-2 y = 0 \]

19318

\[ {}x^{2} y^{\prime \prime \prime }-2 y^{\prime } = 0 \]

19321

\[ {}x^{2} y^{\prime \prime \prime }+x y^{\prime \prime }-4 y^{\prime } = 0 \]

19322

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 x y^{\prime }-8 y = 0 \]

19324

\[ {}x^{2} y^{\prime \prime \prime }+3 x y^{\prime \prime }+2 y^{\prime } = 0 \]

19351

\[ {}x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

19365

\[ {}y^{2}+\left (2 x y-1\right ) y^{\prime }+x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = 0 \]

19389

\[ {}x y^{\prime \prime \prime }-x y^{\prime \prime }-y^{\prime } = 0 \]

19409

\[ {}a^{2} y^{\prime \prime \prime \prime } = y^{\prime \prime } \]

19410

\[ {}y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0 \]

19412

\[ {}x^{2} y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0 \]

19413

\[ {}x^{2} y^{\prime \prime \prime \prime } = \lambda y^{\prime \prime } \]

19414

\[ {}n \,x^{3} y^{\prime \prime \prime } = -x y^{\prime }+y \]

19423

\[ {}a y^{\prime \prime \prime } = y^{\prime \prime } \]

19441

\[ {}y^{\prime \prime \prime }-x y^{\prime \prime }-y^{\prime }+x y = 0 \]

19442

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

19530

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-9 y^{\prime \prime }-11 y^{\prime }-4 y = 0 \]

19531

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

19581

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime }-4 y = 0 \]

19582

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

19586

\[ {}\left (2 x -1\right )^{3} y^{\prime \prime \prime }+\left (2 x -1\right ) y^{\prime }-2 y = 0 \]

19593

\[ {}\left (x^{2}+x +1\right ) y^{\prime \prime \prime }+\left (3+6 x \right ) y^{\prime \prime }+6 y^{\prime } = 0 \]

19611

\[ {}y^{\prime \prime \prime \prime }-a^{2} y^{\prime \prime } = 0 \]