5.1.14 Problems 1301 to 1400

Table 5.27: First order ode

#

ODE

Mathematica

Maple

3613

\[ {}y^{\prime }+2 x y = 2 x^{3} \]

3614

\[ {}y^{\prime }+\frac {2 x y}{-x^{2}+1} = 4 x \]

3615

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = \frac {4}{\left (x^{2}+1\right )^{2}} \]

3616

\[ {}2 \cos \left (x \right )^{2} y^{\prime }+y \sin \left (2 x \right ) = 4 \cos \left (x \right )^{4} \]

3617

\[ {}y^{\prime }+\frac {y}{x \ln \left (x \right )} = 9 x^{2} \]

3618

\[ {}y^{\prime }-y \tan \left (x \right ) = 8 \sin \left (x \right )^{3} \]

3619

\[ {}t x^{\prime }+2 x = 4 \,{\mathrm e}^{t} \]

3620

\[ {}y^{\prime } = \sin \left (x \right ) \left (y \sec \left (x \right )-2\right ) \]

3621

\[ {}1-y \sin \left (x \right )-\cos \left (x \right ) y^{\prime } = 0 \]

3622

\[ {}y^{\prime }-\frac {y}{x} = 2 \ln \left (x \right ) x^{2} \]

3623

\[ {}y^{\prime }+\alpha y = {\mathrm e}^{\beta x} \]

3624

\[ {}y^{\prime }+\frac {m y}{x} = \ln \left (x \right ) \]

3625

\[ {}y^{\prime }+\frac {2 y}{x} = 4 x \]

3626

\[ {}\sin \left (x \right ) y^{\prime }-y \cos \left (x \right ) = \sin \left (2 x \right ) \]

3627

\[ {}x^{\prime }+\frac {2 x}{-t +4} = 5 \]

3628

\[ {}y-{\mathrm e}^{x}+y^{\prime } = 0 \]

3629

\[ {}y^{\prime }-2 y = \left \{\begin {array}{cc} 1 & x \le 1 \\ 0 & 1<x \end {array}\right . \]

3630

\[ {}y^{\prime }-2 y = \left \{\begin {array}{cc} 1-x & x <1 \\ 0 & 1\le x \end {array}\right . \]

3632

\[ {}y^{\prime }+\frac {y}{x} = \cos \left (x \right ) \]

3633

\[ {}y^{\prime }+y = {\mathrm e}^{-2 x} \]

3634

\[ {}y^{\prime }+y \cot \left (x \right ) = 2 \cos \left (x \right ) \]

3635

\[ {}x y^{\prime }-y = \ln \left (x \right ) x^{2} \]

3636

\[ {}y^{\prime } = \frac {y^{2}+x y+x^{2}}{x^{2}} \]

3637

\[ {}\left (3 x -y\right ) y^{\prime } = 3 y \]

3638

\[ {}y^{\prime } = \frac {\left (x +y\right )^{2}}{2 x^{2}} \]

3639

\[ {}\sin \left (\frac {y}{x}\right ) \left (x y^{\prime }-y\right ) = x \cos \left (\frac {y}{x}\right ) \]

3640

\[ {}x y^{\prime } = \sqrt {16 x^{2}-y^{2}}+y \]

3641

\[ {}x y^{\prime }-y = \sqrt {9 x^{2}+y^{2}} \]

3642

\[ {}y \left (x^{2}-y^{2}\right )-x \left (x^{2}-y^{2}\right ) y^{\prime } = 0 \]

3643

\[ {}x y^{\prime }+y \ln \left (x \right ) = y \ln \left (y\right ) \]

3644

\[ {}y^{\prime } = \frac {y^{2}+2 x y-2 x^{2}}{x^{2}-x y+y^{2}} \]

3645

\[ {}2 x y y^{\prime }-x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}}-2 y^{2} = 0 \]

3646

\[ {}x^{2} y^{\prime } = y^{2}+3 x y+x^{2} \]

3647

\[ {}y y^{\prime } = -x +\sqrt {x^{2}+y^{2}} \]

3648

\[ {}2 x \left (y+2 x \right ) y^{\prime } = \left (4 x -y\right ) y \]

3649

\[ {}x y^{\prime } = x \tan \left (\frac {y}{x}\right )+y \]

3650

\[ {}y^{\prime } = \frac {x \sqrt {x^{2}+y^{2}}+y^{2}}{x y} \]

3651

\[ {}y^{\prime } = \frac {-2 x +4 y}{x +y} \]

3652

\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \]

3653

\[ {}y^{\prime } = \frac {y-\sqrt {x^{2}+y^{2}}}{x} \]

3654

\[ {}x y^{\prime }-y = \sqrt {4 x^{2}-y^{2}} \]

3655

\[ {}y^{\prime } = \frac {a y+x}{a x -y} \]

3656

\[ {}y^{\prime } = \frac {x +\frac {y}{2}}{\frac {x}{2}-y} \]

3657

\[ {}y^{\prime }-\frac {y}{x} = \frac {4 x^{2} \cos \left (x \right )}{y} \]

3658

\[ {}y^{\prime }+\frac {y \tan \left (x \right )}{2} = 2 y^{3} \sin \left (x \right ) \]

3659

\[ {}y^{\prime }-\frac {3 y}{2 x} = 6 y^{{1}/{3}} x^{2} \ln \left (x \right ) \]

3660

\[ {}y^{\prime }+\frac {2 y}{x} = 6 \sqrt {x^{2}+1}\, \sqrt {y} \]

3661

\[ {}y^{\prime }+\frac {2 y}{x} = 6 y^{2} x^{4} \]

3662

\[ {}2 x \left (y^{\prime }+x^{2} y^{3}\right )+y = 0 \]

3663

\[ {}\left (x -a \right ) \left (x -b \right ) \left (y^{\prime }-\sqrt {y}\right ) = 2 \left (b -a \right ) y \]

3664

\[ {}y^{\prime }+\frac {6 y}{x} = \frac {3 y^{{2}/{3}} \cos \left (x \right )}{x} \]

3665

\[ {}y^{\prime }+4 x y = 4 x^{3} \sqrt {y} \]

3666

\[ {}y^{\prime }-\frac {y}{2 x \ln \left (x \right )} = 2 x y^{3} \]

3667

\[ {}y^{\prime }-\frac {y}{\left (\pi -1\right ) x} = \frac {3 x y^{\pi }}{1-\pi } \]

3668

\[ {}2 y^{\prime }+y \cot \left (x \right ) = \frac {8 \cos \left (x \right )^{3}}{y} \]

3669

\[ {}\left (1-\sqrt {3}\right ) y^{\prime }+y \sec \left (x \right ) = y^{\sqrt {3}} \sec \left (x \right ) \]

3670

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = x y^{2} \]

3671

\[ {}y^{\prime }+y \cot \left (x \right ) = y^{3} \sin \left (x \right )^{3} \]

3672

\[ {}y^{\prime } = \left (9 x -y\right )^{2} \]

3673

\[ {}y^{\prime } = \left (4 x +y+2\right )^{2} \]

3674

\[ {}y^{\prime } = \sin \left (3 x -3 y+1\right )^{2} \]

3675

\[ {}y^{\prime } = \frac {y \left (\ln \left (x y\right )-1\right )}{x} \]

3676

\[ {}y^{\prime } = 2 x \left (x +y\right )^{2}-1 \]

3677

\[ {}y^{\prime } = \frac {x +2 y-1}{2 x -y+3} \]

3678

\[ {}y^{\prime }+p \left (x \right ) y+q \left (x \right ) y^{2} = r \left (x \right ) \]

3679

\[ {}y^{\prime }+\frac {2 y}{x}-y^{2} = -\frac {2}{x^{2}} \]

3680

\[ {}y^{\prime }+\frac {7 y}{x}-3 y^{2} = \frac {3}{x^{2}} \]

3681

\[ {}\frac {y^{\prime }}{y}+p \left (x \right ) \ln \left (y\right ) = q \left (x \right ) \]

3682

\[ {}\frac {y^{\prime }}{y}-\frac {2 \ln \left (y\right )}{x} = \frac {1-2 \ln \left (x \right )}{x} \]

3683

\[ {}\sec \left (y\right )^{2} y^{\prime }+\frac {\tan \left (y\right )}{2 \sqrt {1+x}} = \frac {1}{2 \sqrt {1+x}} \]

3684

\[ {}y \,{\mathrm e}^{x y}+\left (2 y-x \,{\mathrm e}^{x y}\right ) y^{\prime } = 0 \]

3685

\[ {}\cos \left (x y\right )-x y \sin \left (x y\right )-x^{2} \sin \left (x y\right ) y^{\prime } = 0 \]

3686

\[ {}y+3 x^{2}+x y^{\prime } = 0 \]

3687

\[ {}2 x \,{\mathrm e}^{y}+\left (3 y^{2}+x^{2} {\mathrm e}^{y}\right ) y^{\prime } = 0 \]

3688

\[ {}2 x y+\left (x^{2}+1\right ) y^{\prime } = 0 \]

3689

\[ {}y^{2}-2 x +2 x y y^{\prime } = 0 \]

3690

\[ {}4 \,{\mathrm e}^{2 x}+2 x y-y^{2}+\left (x -y\right )^{2} y^{\prime } = 0 \]

3691

\[ {}\frac {1}{x}-\frac {y}{x^{2}+y^{2}}+\frac {x y^{\prime }}{x^{2}+y^{2}} = 0 \]

3692

\[ {}y \cos \left (x y\right )-\sin \left (x \right )+x \cos \left (x y\right ) y^{\prime } = 0 \]

3693

\[ {}2 y^{2} {\mathrm e}^{2 x}+3 x^{2}+2 y \,{\mathrm e}^{2 x} y^{\prime } = 0 \]

3694

\[ {}y^{2}+\cos \left (x \right )+\left (2 x y+\sin \left (y\right )\right ) y^{\prime } = 0 \]

3695

\[ {}\sin \left (y\right )+y \cos \left (x \right )+\left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime } = 0 \]

3928

\[ {}y^{\prime }-2 y = 6 \,{\mathrm e}^{5 t} \]

3929

\[ {}y+y^{\prime } = 8 \,{\mathrm e}^{3 t} \]

3930

\[ {}y^{\prime }+3 y = 2 \,{\mathrm e}^{-t} \]

3931

\[ {}2 y+y^{\prime } = 4 t \]

3932

\[ {}y^{\prime }-y = 6 \cos \left (t \right ) \]

3933

\[ {}y^{\prime }-y = 5 \sin \left (2 t \right ) \]

3934

\[ {}y+y^{\prime } = 5 \,{\mathrm e}^{t} \sin \left (t \right ) \]

3956

\[ {}2 y+y^{\prime } = 2 \operatorname {Heaviside}\left (t -1\right ) \]

3957

\[ {}y^{\prime }-2 y = \operatorname {Heaviside}\left (t -2\right ) {\mathrm e}^{t -2} \]

3958

\[ {}y^{\prime }-y = 4 \operatorname {Heaviside}\left (t -\frac {\pi }{4}\right ) \sin \left (t +\frac {\pi }{4}\right ) \]

3959

\[ {}2 y+y^{\prime } = \operatorname {Heaviside}\left (t -\pi \right ) \sin \left (2 t \right ) \]

3960

\[ {}y^{\prime }+3 y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]

3961

\[ {}y^{\prime }-3 y = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\frac {\pi }{2} \\ 1 & \frac {\pi }{2}\le t \end {array}\right . \]

3962

\[ {}y^{\prime }-3 y = -10 \,{\mathrm e}^{-t +a} \sin \left (-2 t +2 a \right ) \operatorname {Heaviside}\left (t -a \right ) \]

3971

\[ {}y^{\prime }-y = \left \{\begin {array}{cc} 2 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \]

3972

\[ {}y^{\prime }-y = \left \{\begin {array}{cc} 2 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \]

3973

\[ {}y+y^{\prime } = \delta \left (t -5\right ) \]

3974

\[ {}y^{\prime }-2 y = \delta \left (t -2\right ) \]