5.21.4 Problems 301 to 400

Table 5.991: Higher order, Linear, Homogeneous and constant coefficients

#

ODE

Mathematica

Maple

13426

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime }+2 y = 0 \]

13427

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime }+12 y = 0 \]

13428

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+15 y^{\prime \prime }+20 y^{\prime }+12 y = 0 \]

13429

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]

13430

\[ {}y^{\left (5\right )} = 0 \]

13445

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

13446

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

13447

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 0 \]

13448

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+9 y^{\prime }-5 y = 0 \]

13449

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+6 y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

13450

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime }+13 y^{\prime }+30 y = 0 \]

13902

\[ {}y^{\prime }+y^{\prime \prime \prime }-3 y^{\prime \prime } = 0 \]

13981

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = 0 \]

13983

\[ {}3 y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 0 \]

14030

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]

14038

\[ {}y^{\prime \prime \prime }+8 y^{\prime \prime }+16 y^{\prime } = 0 \]

14039

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+13 y^{\prime } = 0 \]

14040

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+13 y^{\prime } = 0 \]

14041

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+29 y^{\prime } = 0 \]

14042

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+25 y^{\prime } = 0 \]

14043

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+10 y^{\prime } = 0 \]

14044

\[ {}y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]

14225

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

14246

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

14247

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

14248

\[ {}y^{\prime \prime \prime }-3 a y^{\prime \prime }+3 a^{2} y^{\prime }-y a^{3} = 0 \]

14249

\[ {}y^{\left (5\right )}-4 y^{\prime \prime \prime } = 0 \]

14250

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+9 y = 0 \]

14251

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

14252

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]

14253

\[ {}y^{\prime \prime \prime \prime }-a^{4} y = 0 \]

14325

\[ {}y^{\prime \prime \prime }-7 y^{\prime \prime }+12 y^{\prime } = 0 \]

14491

\[ {}y^{\prime \prime \prime }+y^{\prime } = 0 \]

14497

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+6 y^{\prime }-4 y = 0 \]

14498

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

14499

\[ {}y^{\prime \prime \prime \prime }+16 y = 0 \]

14500

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+8 y^{\prime \prime }-8 y^{\prime }+4 y = 0 \]

14501

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime } = 0 \]

14502

\[ {}36 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }-11 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

14503

\[ {}y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

14504

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+35 y^{\prime \prime }+16 y^{\prime }-52 y = 0 \]

14505

\[ {}y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y = 0 \]

14507

\[ {}y^{\prime \prime \prime }+\left (-3-4 i\right ) y^{\prime \prime }+\left (-4+12 i\right ) y^{\prime }+12 y = 0 \]

14508

\[ {}y^{\prime \prime \prime \prime }+\left (-3-i\right ) y^{\prime \prime \prime }+\left (4+3 i\right ) y^{\prime \prime } = 0 \]

14517

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0 \]

14518

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime }-y = 0 \]

14542

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 0 \]

15224

\[ {}y^{\prime \prime \prime } = y^{\prime \prime } \]

15227

\[ {}y^{\prime \prime \prime \prime } = -2 y^{\prime \prime \prime } \]

15247

\[ {}y^{\prime \prime \prime } = y^{\prime \prime } \]

15267

\[ {}y^{\prime \prime \prime }+y = 0 \]

15292

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = 0 \]

15294

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+24 y^{\prime \prime }-32 y^{\prime }+16 y = 0 \]

15307

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = 0 \]

15308

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

15313

\[ {}y^{\prime \prime \prime }-9 y^{\prime } = 0 \]

15314

\[ {}y^{\prime \prime \prime \prime }-10 y^{\prime \prime }+9 y = 0 \]

15353

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 0 \]

15354

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]

15355

\[ {}y^{\prime \prime \prime \prime }-34 y^{\prime \prime }+225 y = 0 \]

15356

\[ {}y^{\prime \prime \prime \prime }-81 y = 0 \]

15357

\[ {}y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y = 0 \]

15358

\[ {}y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = 0 \]

15359

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0 \]

15360

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

15361

\[ {}y^{\prime \prime \prime }-8 y^{\prime \prime }+37 y^{\prime }-50 y = 0 \]

15362

\[ {}y^{\prime \prime \prime }-9 y^{\prime \prime }+31 y^{\prime }-39 y = 0 \]

15363

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+2 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

15364

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+10 y^{\prime \prime }+18 y^{\prime }+9 y = 0 \]

15365

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = 0 \]

15366

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

15367

\[ {}y^{\prime \prime \prime \prime }+26 y^{\prime \prime }+25 y = 0 \]

15368

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+9 y^{\prime \prime }+9 y^{\prime } = 0 \]

15369

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

15370

\[ {}y^{\prime \prime \prime }+216 y = 0 \]

15371

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime }-4 y = 0 \]

15372

\[ {}y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]

15373

\[ {}y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0 \]

15374

\[ {}y^{\left (6\right )}-2 y^{\prime \prime \prime }+y = 0 \]

15375

\[ {}16 y^{\prime \prime \prime \prime }-y = 0 \]

15376

\[ {}4 y^{\prime \prime \prime \prime }+15 y^{\prime \prime }-4 y = 0 \]

15377

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+16 y^{\prime }-16 y = 0 \]

15378

\[ {}y^{\left (6\right )}+16 y^{\prime \prime \prime }+64 y = 0 \]

15542

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

15547

\[ {}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+13 y^{\prime \prime \prime } = 0 \]

15560

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

15798

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime } = 0 \]

15799

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

15824

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

15825

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = 0 \]

15839

\[ {}y^{\prime \prime \prime \prime }+\frac {25 y^{\prime \prime }}{2}-5 y^{\prime }+\frac {629 y}{16} = 0 \]

16367

\[ {}y^{\prime \prime \prime } = 0 \]

16368

\[ {}y^{\prime \prime \prime }-10 y^{\prime \prime }+25 y^{\prime } = 0 \]

16369

\[ {}8 y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]

16370

\[ {}y^{\prime \prime \prime \prime }+16 y^{\prime \prime } = 0 \]

16371

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

16372

\[ {}3 y^{\prime \prime \prime }-4 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

16373

\[ {}6 y^{\prime \prime \prime }-5 y^{\prime \prime }-2 y^{\prime }+y = 0 \]

16374

\[ {}y^{\prime \prime \prime }-5 y^{\prime }+2 y = 0 \]

16375

\[ {}5 y^{\prime \prime \prime }-15 y^{\prime }+11 y = 0 \]