5.22.3 Problems 201 to 245

Table 5.1001: Higher order, Linear, Homogeneous and non-constant coefficients

#

ODE

Mathematica

Maple

17798

\[ {}\left (x -4\right ) y^{\prime \prime \prime \prime }+\left (1+x \right ) y^{\prime \prime }+\tan \left (x \right ) y = 0 \]

17799

\[ {}\left (x^{2}-2\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+3 y = 0 \]

17802

\[ {}t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+7 t^{2} y = 0 \]

17804

\[ {}\left (x -1\right ) y^{\prime \prime \prime \prime }+\left (x +5\right ) y^{\prime \prime }+\tan \left (x \right ) y = 0 \]

17805

\[ {}\left (x^{2}-25\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+5 y = 0 \]

17812

\[ {}x y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

17813

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

17993

\[ {}2 x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+12 x y^{\prime }-12 y = 0 \]

17994

\[ {}y^{\prime \prime \prime }-\frac {3 y^{\prime \prime }}{x}+\frac {6 y^{\prime }}{x^{2}}-\frac {6 y}{x^{3}} = 0 \]

17998

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

17999

\[ {}x y^{\prime \prime \prime }-y^{\prime \prime }+x y^{\prime }-y = 0 \]

18000

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime \prime }-x y^{\prime \prime }+y^{\prime } = 0 \]

18376

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime } = 0 \]

18377

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

18378

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

18379

\[ {}x^{3} y^{\prime \prime \prime \prime }+8 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }-8 y^{\prime } = 0 \]

18598

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

18605

\[ {}y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x} = 0 \]

18617

\[ {}x^{3} v^{\prime \prime \prime }+2 x^{2} v^{\prime \prime }+v = 0 \]

18688

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

18925

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

18926

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

18935

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 x y^{\prime }-8 y = 0 \]

18937

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime }-4 y = 0 \]

18947

\[ {}x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

18971

\[ {}x^{2} y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0 \]

18984

\[ {}\left (x^{3}+x +1\right ) y^{\prime \prime \prime }+\left (3+6 x \right ) y^{\prime \prime }+6 y = 0 \]

18992

\[ {}x y^{\prime \prime \prime }-x y^{\prime \prime }-y^{\prime } = 0 \]

19027

\[ {}x^{2} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

19317

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-2 y = 0 \]

19318

\[ {}x^{2} y^{\prime \prime \prime }-2 y^{\prime } = 0 \]

19321

\[ {}x^{2} y^{\prime \prime \prime }+x y^{\prime \prime }-4 y^{\prime } = 0 \]

19322

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 x y^{\prime }-8 y = 0 \]

19324

\[ {}x^{2} y^{\prime \prime \prime }+3 x y^{\prime \prime }+2 y^{\prime } = 0 \]

19351

\[ {}x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

19389

\[ {}x y^{\prime \prime \prime }-x y^{\prime \prime }-y^{\prime } = 0 \]

19412

\[ {}x^{2} y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0 \]

19413

\[ {}x^{2} y^{\prime \prime \prime \prime } = \lambda y^{\prime \prime } \]

19414

\[ {}n \,x^{3} y^{\prime \prime \prime } = -x y^{\prime }+y \]

19441

\[ {}y^{\prime \prime \prime }-x y^{\prime \prime }-y^{\prime }+x y = 0 \]

19442

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

19581

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime }-4 y = 0 \]

19582

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

19586

\[ {}\left (2 x -1\right )^{3} y^{\prime \prime \prime }+\left (2 x -1\right ) y^{\prime }-2 y = 0 \]

19593

\[ {}\left (x^{2}+x +1\right ) y^{\prime \prime \prime }+\left (3+6 x \right ) y^{\prime \prime }+6 y^{\prime } = 0 \]