5.25.10 Problems 901 to 919

Table 5.1117: Second order, Linear, Homogeneous and constant coefficients

#

ODE

Mathematica

Maple

18700

\[ {}y^{\prime \prime } = -a^{2} y \]

18726

\[ {}y^{\prime \prime }-k^{2} y = 0 \]

18867

\[ {}y^{\prime \prime }+3 y^{\prime }-54 y = 0 \]

18868

\[ {}y^{\prime \prime }-m^{2} y = 0 \]

18869

\[ {}2 y^{\prime \prime }+5 y^{\prime }-12 y = 0 \]

18870

\[ {}9 y^{\prime \prime }+18 y^{\prime }-16 y = 0 \]

18873

\[ {}y^{\prime \prime }+8 y^{\prime }+25 y = 0 \]

18957

\[ {}y^{\prime \prime }+a^{2} y = 0 \]

18999

\[ {}a y^{\prime \prime } = y^{\prime } \]

19159

\[ {}y^{\prime \prime }-n^{2} y = 0 \]

19161

\[ {}2 x^{\prime \prime }+5 x^{\prime }-12 x = 0 \]

19162

\[ {}y^{\prime \prime }+3 y^{\prime }-54 y = 0 \]

19163

\[ {}9 x^{\prime \prime }+18 x^{\prime }-16 x = 0 \]

19165

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

19374

\[ {}y^{\prime \prime } = y \]

19376

\[ {}y^{\prime \prime }-a^{2} y = 0 \]

19400

\[ {}a y^{\prime \prime } = y^{\prime } \]

19422

\[ {}y^{\prime \prime }+a^{2} y = 0 \]

19529

\[ {}2 y^{\prime \prime }+9 y^{\prime }-18 y = 0 \]