4.20.32 Problems 3101 to 3200

Table 4.965: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

Sympy

16886

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+4 y^{\prime \prime }-2 y^{\prime }-5 y = 0 \]

16887

\[ {} y^{\left (5\right )}+4 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }-6 y^{\prime }-4 y = 0 \]

16888

\[ {} y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 0 \]

16889

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime } = 0 \]

16890

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

16891

\[ {} y^{\left (5\right )} = 0 \]

16892

\[ {} y^{\prime \prime \prime }-3 y^{\prime }-2 y = 0 \]

16893

\[ {} 2 y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime } = 0 \]

16894

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]

16895

\[ {} y^{\prime \prime }+3 y^{\prime } = 3 \]

16896

\[ {} y^{\prime \prime }-7 y^{\prime } = \left (x -1\right )^{2} \]

16897

\[ {} y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{x} \]

16898

\[ {} y^{\prime \prime }+7 y^{\prime } = {\mathrm e}^{-7 x} \]

16899

\[ {} y^{\prime \prime }-8 y^{\prime }+16 y = \left (1-x \right ) {\mathrm e}^{4 x} \]

16900

\[ {} y^{\prime \prime }-10 y^{\prime }+25 y = {\mathrm e}^{5 x} \]

16901

\[ {} 4 y^{\prime \prime }-3 y^{\prime } = x \,{\mathrm e}^{\frac {3 x}{4}} \]

16902

\[ {} y^{\prime \prime }-4 y^{\prime } = x \,{\mathrm e}^{4 x} \]

16903

\[ {} y^{\prime \prime }+25 y = \cos \left (5 x \right ) \]

16904

\[ {} y^{\prime \prime }+y = \sin \left (x \right )-\cos \left (x \right ) \]

16905

\[ {} y^{\prime \prime }+16 y = \sin \left (4 x +\alpha \right ) \]

16906

\[ {} y^{\prime \prime }+4 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (\sin \left (2 x \right )+\cos \left (2 x \right )\right ) \]

16907

\[ {} y^{\prime \prime }-4 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (\sin \left (2 x \right )-\cos \left (2 x \right )\right ) \]

16908

\[ {} y^{\prime \prime }+6 y^{\prime }+13 y = {\mathrm e}^{-3 x} \cos \left (2 x \right ) \]

16909

\[ {} y^{\prime \prime }+k^{2} y = k \sin \left (k x +\alpha \right ) \]

16910

\[ {} y^{\prime \prime }+k^{2} y = k \]

16911

\[ {} y^{\prime \prime \prime }+y = x \]

16912

\[ {} y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 1 \]

16913

\[ {} y^{\prime \prime \prime }+y^{\prime } = 2 \]

16914

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = 3 \]

16915

\[ {} y^{\prime \prime \prime \prime }-y = 1 \]

16916

\[ {} y^{\prime \prime \prime \prime }-y^{\prime } = 2 \]

16917

\[ {} y^{\prime \prime \prime \prime }-y^{\prime \prime } = 3 \]

16918

\[ {} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = 4 \]

16919

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 1 \]

16920

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{4 x} \]

16921

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{-x} \]

16922

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{-x} \]

16923

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]

16924

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \cos \left (x \right ) \]

16925

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \sin \left (2 x \right ) x \]

16926

\[ {} y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y = a \sin \left (n x +\alpha \right ) \]

16927

\[ {} y^{\prime \prime \prime \prime }-2 n^{2} y^{\prime \prime }+n^{4} y = \cos \left (n x +\alpha \right ) \]

16928

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (x \right ) \]

16929

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x} \]

16930

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = x \,{\mathrm e}^{x} \]

16931

\[ {} y^{\prime \prime }+2 y^{\prime }+y = -2 \]

16932

\[ {} y^{\prime \prime }+2 y^{\prime } = -2 \]

16933

\[ {} y^{\prime \prime }+9 y = 9 \]

16934

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = 1 \]

16935

\[ {} 5 y^{\prime \prime \prime }-7 y^{\prime \prime } = 3 \]

16936

\[ {} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime } = -6 \]

16937

\[ {} 3 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 2 \]

16938

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 1 \]

16939

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = x^{2} \]

16940

\[ {} y^{\prime \prime }+8 y^{\prime } = 8 x \]

16941

\[ {} y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x} \]

16942

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 8 \,{\mathrm e}^{-2 x} \]

16943

\[ {} y^{\prime \prime }+4 y^{\prime }+3 y = 9 \,{\mathrm e}^{-3 x} \]

16944

\[ {} 7 y^{\prime \prime }-y^{\prime } = 14 x \]

16945

\[ {} y^{\prime \prime }+3 y^{\prime } = 3 x \,{\mathrm e}^{-3 x} \]

16946

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = 10 \left (1-x \right ) {\mathrm e}^{-2 x} \]

16947

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = 1+x \]

16948

\[ {} y^{\prime \prime }+y^{\prime }+y = \left (x^{2}+x \right ) {\mathrm e}^{x} \]

16949

\[ {} y^{\prime \prime }+4 y^{\prime }-2 y = 8 \sin \left (2 x \right ) \]

16950

\[ {} y^{\prime \prime }+y = 4 x \cos \left (x \right ) \]

16951

\[ {} y^{\prime \prime }-2 m y^{\prime }+m^{2} y = \sin \left (n x \right ) \]

16952

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{-x} \sin \left (2 x \right ) \]

16953

\[ {} y^{\prime \prime }+a^{2} y = 2 \cos \left (m x \right )+3 \sin \left (m x \right ) \]

16954

\[ {} y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} \sin \left (x \right ) \]

16955

\[ {} y^{\prime \prime }+2 y^{\prime } = 4 \left (\cos \left (x \right )+\sin \left (x \right )\right ) {\mathrm e}^{x} \]

16956

\[ {} y^{\prime \prime }+4 y^{\prime }+5 y = 10 \,{\mathrm e}^{-2 x} \cos \left (x \right ) \]

16957

\[ {} 4 y^{\prime \prime }+8 y^{\prime } = x \sin \left (x \right ) \]

16958

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{x} \]

16959

\[ {} y^{\prime \prime }+y^{\prime }-2 y = x^{2} {\mathrm e}^{4 x} \]

16960

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = \left (x^{2}+x \right ) {\mathrm e}^{3 x} \]

16961

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = x^{2}+x \]

16962

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \]

16963

\[ {} y^{\prime \prime }-2 y^{\prime }+y = x^{3} \]

16964

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime } = x^{2}+x \]

16965

\[ {} y^{\prime \prime }+y = x^{2} \sin \left (x \right ) \]

16966

\[ {} y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \cos \left (x \right ) \]

16967

\[ {} y^{\prime \prime \prime }-y = \sin \left (x \right ) \]

16968

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = \cos \left (x \right ) \]

16969

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \cos \left (2 x \right ) \]

16970

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \left (\sin \left (x \right )+2 \cos \left (x \right )\right ) \]

16971

\[ {} y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{x}+{\mathrm e}^{-2 x} \]

16972

\[ {} y^{\prime \prime }+4 y^{\prime } = x +{\mathrm e}^{-4 x} \]

16973

\[ {} y^{\prime \prime }-y = x +\sin \left (x \right ) \]

16974

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = \left (\sin \left (x \right )+1\right ) {\mathrm e}^{x} \]

16975

\[ {} y^{\prime \prime \prime }-y^{\prime \prime } = 1+{\mathrm e}^{x} \]

16976

\[ {} y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{2 x}+\sin \left (2 x \right ) \]

16977

\[ {} y^{\prime \prime }+4 y = \sin \left (x \right ) \sin \left (2 x \right ) \]

16978

\[ {} y^{\prime \prime }-4 y^{\prime } = 2 \cos \left (4 x \right )^{2} \]

16979

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 4 x -2 \,{\mathrm e}^{x} \]

16980

\[ {} y^{\prime \prime }-3 y^{\prime } = 18 x -10 \cos \left (x \right ) \]

16981

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 2+{\mathrm e}^{x} \sin \left (x \right ) \]

16982

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = \left (5 x +4\right ) {\mathrm e}^{x}+{\mathrm e}^{-x} \]

16983

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 4 \,{\mathrm e}^{-x}+17 \sin \left (2 x \right ) \]

16984

\[ {} 2 y^{\prime \prime }-3 y^{\prime }-2 y = 5 \,{\mathrm e}^{x} \cosh \left (x \right ) \]

16985

\[ {} y^{\prime \prime }+4 y = x \sin \left (x \right )^{2} \]