4.25.10 Problems 901 to 920

Table 4.1111: Second order, Linear, Homogeneous and constant coefficients

#

ODE

Mathematica

Maple

Sympy

18604

\[ {} e y^{\prime \prime } = P \left (-y+a \right ) \]

18621

\[ {} y^{\prime \prime } = -a^{2} y \]

18647

\[ {} y^{\prime \prime }-k^{2} y = 0 \]

18788

\[ {} y^{\prime \prime }+3 y^{\prime }-54 y = 0 \]

18789

\[ {} y^{\prime \prime }-m^{2} y = 0 \]

18790

\[ {} 2 y^{\prime \prime }+5 y^{\prime }-12 y = 0 \]

18791

\[ {} 9 y^{\prime \prime }+18 y^{\prime }-16 y = 0 \]

18794

\[ {} y^{\prime \prime }+8 y^{\prime }+25 y = 0 \]

18878

\[ {} y^{\prime \prime }+a^{2} y = 0 \]

18920

\[ {} a y^{\prime \prime } = y^{\prime } \]

19080

\[ {} y^{\prime \prime }-n^{2} y = 0 \]

19082

\[ {} 2 x^{\prime \prime }+5 x^{\prime }-12 x = 0 \]

19083

\[ {} y^{\prime \prime }+3 y^{\prime }-54 y = 0 \]

19084

\[ {} 9 x^{\prime \prime }+18 x^{\prime }-16 x = 0 \]

19086

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

19295

\[ {} y^{\prime \prime } = y \]

19297

\[ {} y^{\prime \prime }-a^{2} y = 0 \]

19321

\[ {} a y^{\prime \prime } = y^{\prime } \]

19343

\[ {} y^{\prime \prime }+a^{2} y = 0 \]

19450

\[ {} 2 y^{\prime \prime }+9 y^{\prime }-18 y = 0 \]