4.150 Problems 14901 to 15000

Table 4.299: Main lookup table sequentially arranged




#

ODE

Mathematica

Maple





14901

\[ {}x^{\prime \prime }+9 x = 0 \]





14902

\[ {}10 x^{\prime \prime }+\frac {x}{10} = 0 \]





14903

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]





14904

\[ {}\frac {x^{\prime \prime }}{32}+2 x^{\prime }+x = 0 \]





14905

\[ {}\frac {x^{\prime \prime }}{4}+2 x^{\prime }+x = 0 \]





14906

\[ {}4 x^{\prime \prime }+2 x^{\prime }+8 x = 0 \]





14907

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = 0 \]





14908

\[ {}x^{\prime \prime }+4 x^{\prime }+20 x = 0 \]





14909

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]





14910

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} \cos \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]





14911

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} t & 0\le t <1 \\ 2-t & 1\le t <2 \\ 0 & 2\le t \end {array}\right . \]





14912

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 1-t & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]





14913

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]





14914

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]





14915

\[ {}x^{\prime \prime }+x = \cos \left (\frac {9 t}{10}\right ) \]





14916

\[ {}x^{\prime \prime }+x = \cos \left (\frac {7 t}{10}\right ) \]





14917

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{10}+x = 3 \cos \left (2 t \right ) \]





14918

\[ {}[x^{\prime }\left (t \right ) = 6, y^{\prime }\left (t \right ) = \cos \left (t \right )] \]





14919

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 1] \]





14920

\[ {}[x^{\prime }\left (t \right ) = 0, y^{\prime }\left (t \right ) = -2 y \left (t \right )] \]





14921

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )^{2}, y^{\prime }\left (t \right ) = {\mathrm e}^{t}] \]





14922

\[ {}[x_{1}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 1] \]





14923

\[ {}[x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+1, x_{2}^{\prime }\left (t \right ) = x_{2} \left (t \right )] \]





14924

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )+6 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )] \]





14925

\[ {}[x^{\prime }\left (t \right ) = 8 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+6 y \left (t \right )] \]





14926

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]





14927

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right )] \]





14928

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+1] \]





14929

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+\sin \left (2 t \right )] \]





14930

\[ {}x^{\prime \prime }-3 x^{\prime }+4 x = 0 \]





14931

\[ {}x^{\prime \prime }+6 x^{\prime }+9 x = 0 \]





14932

\[ {}x^{\prime \prime }+16 x = t \sin \left (t \right ) \]





14933

\[ {}x^{\prime \prime }+x = {\mathrm e}^{t} \]





14934

\[ {}y^{\prime } = x^{2}+y^{2} \]





14935

\[ {}y^{\prime } = \frac {x}{y} \]





14936

\[ {}y^{\prime } = y+3 y^{\frac {1}{3}} \]





14937

\[ {}y^{\prime } = \sqrt {x -y} \]





14938

\[ {}y^{\prime } = \sqrt {x^{2}-y}-x \]





14939

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]





14940

\[ {}y^{\prime } = \frac {y+1}{x -y} \]





14941

\[ {}y^{\prime } = \sin \left (y\right )-\cos \left (x \right ) \]





14942

\[ {}y^{\prime } = 1-\cot \left (y\right ) \]





14943

\[ {}y^{\prime } = \left (3 x -y\right )^{\frac {1}{3}}-1 \]





14944

\[ {}y^{\prime } = \sin \left (x y\right ) \]





14945

\[ {}x y^{\prime }+y = \cos \left (x \right ) \]





14946

\[ {}y^{\prime }+2 y = {\mathrm e}^{x} \]





14947

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x y = 2 x \]





14948

\[ {}y^{\prime } = 1+x \]





14949

\[ {}y^{\prime } = x +y \]





14950

\[ {}y^{\prime } = y-x \]





14951

\[ {}y^{\prime } = \frac {x}{2}-y+\frac {3}{2} \]





14952

\[ {}y^{\prime } = \left (y-1\right )^{2} \]





14953

\[ {}y^{\prime } = \left (y-1\right ) x \]





14954

\[ {}y^{\prime } = x^{2}-y^{2} \]





14955

\[ {}y^{\prime } = \cos \left (x -y\right ) \]





14956

\[ {}y^{\prime } = y-x^{2} \]





14957

\[ {}y^{\prime } = x^{2}+2 x -y \]





14958

\[ {}y^{\prime } = \frac {y+1}{-1+x} \]





14959

\[ {}y^{\prime } = \frac {x +y}{x -y} \]





14960

\[ {}y^{\prime } = 1-x \]





14961

\[ {}y^{\prime } = 2 x -y \]





14962

\[ {}y^{\prime } = x^{2}+y \]





14963

\[ {}y^{\prime } = -\frac {y}{x} \]





14964

\[ {}y^{\prime } = 1 \]





14965

\[ {}y^{\prime } = \frac {1}{x} \]





14966

\[ {}y^{\prime } = y \]





14967

\[ {}y^{\prime } = y^{2} \]





14968

\[ {}y^{\prime } = x^{2}-y^{2} \]





14969

\[ {}y^{\prime } = x +y^{2} \]





14970

\[ {}y^{\prime } = x +y \]





14971

\[ {}y^{\prime } = 2 y-2 x^{2}-3 \]





14972

\[ {}x y^{\prime } = 2 x -y \]





14973

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]





14974

\[ {}1+y^{2}+x y y^{\prime } = 0 \]





14975

\[ {}y^{\prime } \sin \left (x \right )-\cos \left (x \right ) y = 0 \]





14976

\[ {}1+y^{2} = x y^{\prime } \]





14977

\[ {}x \sqrt {1+y^{2}}+y y^{\prime } \sqrt {x^{2}+1} = 0 \]





14978

\[ {}x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0 \]





14979

\[ {}{\mathrm e}^{-y} y^{\prime } = 1 \]





14980

\[ {}y \ln \left (y\right )+x y^{\prime } = 1 \]





14981

\[ {}y^{\prime } = a^{x +y} \]





14982

\[ {}{\mathrm e}^{y} \left (x^{2}+1\right ) y^{\prime }-2 x \left (1+{\mathrm e}^{y}\right ) = 0 \]





14983

\[ {}2 x \sqrt {1-y^{2}} = \left (x^{2}+1\right ) y^{\prime } \]





14984

\[ {}{\mathrm e}^{x} \sin \left (y\right )^{3}+\left ({\mathrm e}^{2 x}+1\right ) \cos \left (y\right ) y^{\prime } = 0 \]





14985

\[ {}y^{2} \sin \left (x \right )+\cos \left (x \right )^{2} \ln \left (y\right ) y^{\prime } = 0 \]





14986

\[ {}y^{\prime } = \sin \left (x -y\right ) \]





14987

\[ {}y^{\prime } = a x +b y+c \]





14988

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]





14989

\[ {}x y^{\prime }+y = a \left (x y+1\right ) \]





14990

\[ {}a^{2}+y^{2}+2 x \sqrt {a x -x^{2}}\, y^{\prime } = 0 \]





14991

\[ {}y^{\prime } = \frac {y}{x} \]





14992

\[ {}\cos \left (y^{\prime }\right ) = 0 \]





14993

\[ {}{\mathrm e}^{y^{\prime }} = 1 \]





14994

\[ {}\sin \left (y^{\prime }\right ) = x \]





14995

\[ {}\ln \left (y^{\prime }\right ) = x \]





14996

\[ {}\tan \left (y^{\prime }\right ) = 0 \]





14997

\[ {}{\mathrm e}^{y^{\prime }} = x \]





14998

\[ {}\tan \left (y^{\prime }\right ) = x \]





14999

\[ {}x^{2} y^{\prime } \cos \left (y\right )+1 = 0 \]





15000

\[ {}x^{2} y^{\prime }+\cos \left (2 y\right ) = 1 \]