# |
ODE |
Mathematica |
Maple |
\[ {}\left (x +y\right ) y^{\prime }+x = y \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = \sqrt {x y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = \sqrt {x^{2}-y^{2}} \] |
✓ |
✓ |
|
\[ {}x +y y^{\prime } = 2 y \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-y+\sqrt {-x^{2}+y^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}+y^{2} = x y y^{\prime } \] |
✓ |
✓ |
|
\[ {}\left (x y-x^{2}\right ) y^{\prime }-y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = 2 \sqrt {x y} \] |
✓ |
✓ |
|
\[ {}x +y+\left (x -y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \left (x^{2}-x y+y^{2}\right )+x y^{\prime } \left (x^{2}+x y+y^{2}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-y-x \sin \left (\frac {y}{x}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x}+\cosh \left (\frac {y}{x}\right ) \] |
✓ |
✓ |
|
\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \] |
✓ |
✓ |
|
\[ {}\left (\frac {x}{y}+\frac {y}{x}\right ) y^{\prime }+1 = 0 \] |
✓ |
✓ |
|
\[ {}x \,{\mathrm e}^{\frac {y}{x}}+y = x y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +y}{x -y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \] |
✓ |
✓ |
|
\[ {}\left (3 x y-2 x^{2}\right ) y^{\prime } = 2 y^{2}-x y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x -k \sqrt {x^{2}+y^{2}}} \] |
✓ |
✓ |
|
\[ {}y^{2} \left (y y^{\prime }-x \right )+x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x}+\tanh \left (\frac {y}{x}\right ) \] |
✓ |
✓ |
|
\[ {}x +y-\left (x -y+2\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +\left (x -2 y+2\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x -y+1+\left (x +y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x -y+2+\left (x +y-1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x -y+\left (-x +y+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +y-1}{x -y-1} \] |
✓ |
✓ |
|
\[ {}x +y+\left (2 x +2 y-1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x -y+1+\left (x -y-1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +2 y+\left (3 x +6 y+3\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +2 y+2 = \left (2 x +y-1\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}3 x -y+1+\left (x -3 y-5\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}6 x -3 y+6+\left (2 x -y+5\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x +3 y+2+\left (y-x \right ) y^{\prime } = 0 \] |
✓ |
✗ |
|
\[ {}x +y+4 = \left (2 x +2 y-1\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}2 x +3 y-1+\left (2 x +3 y+2\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x -y+2+\left (x +2 y+1\right ) y^{\prime } = 0 \] |
✓ |
✗ |
|
\[ {}3 x +2 y+3-\left (x +2 y-1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x -2 y+3+\left (1-x +2 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x +y+\left (4 x +2 y+1\right ) y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}2 x +y+\left (4 x -2 y+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +y+\left (x -2 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x +y+\left (3 y+x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}a_{1} x +b_{1} y+c_{1} +\left (b_{1} x +b_{2} y+c_{2} \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x \left (6 x y+5\right )+\left (2 x^{3}+3 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x^{2} y+x y^{2}+{\mathrm e}^{x}+\left (x^{3}+x^{2} y+\sin \left (y\right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x y-\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\cos \left (x \right ) y-2 \sin \left (y\right ) = \left (2 x \cos \left (y\right )-\sin \left (x \right )\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}\frac {2 x y-1}{y}+\frac {\left (3 y+x \right ) y^{\prime }}{y^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{x} y-2 x +{\mathrm e}^{x} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 y \sin \left (x \right )-\cos \left (y\right )+\left (\sin \left (y\right ) x -3 \cos \left (x \right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{2}+2 y+\left (2 y^{3}-x^{2} y+2 x \right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}\frac {2}{y}-\frac {y}{x^{2}}+\left (\frac {1}{x}-\frac {2 x}{y^{2}}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {x y+1}{y}+\frac {\left (2 y-x \right ) y^{\prime }}{y^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}\frac {y \left (2+x^{3} y\right )}{x^{3}} = \frac {\left (1-2 x^{3} y\right ) y^{\prime }}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{2} \csc \left (x \right )^{2}+6 x y-2 = \left (2 y \cot \left (x \right )-3 x^{2}\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}\frac {2 y}{x^{3}}+\frac {2 x}{y^{2}} = \left (\frac {1}{x^{2}}+\frac {2 x^{2}}{y^{3}}\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}\cos \left (y\right )-\left (\sin \left (y\right ) x -y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 y \sin \left (x y\right )+\left (2 x \sin \left (x y\right )+y^{3}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {x \cos \left (\frac {x}{y}\right )}{y}+\sin \left (\frac {x}{y}\right )+\cos \left (x \right )-\frac {x^{2} \cos \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}y \,{\mathrm e}^{x y}+2 x y+\left (x \,{\mathrm e}^{x y}+x^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {x^{2}+3 y^{2}}{x \left (3 x^{2}+4 y^{2}\right )}+\frac {\left (2 x^{2}+y^{2}\right ) y^{\prime }}{y \left (3 x^{2}+4 y^{2}\right )} = 0 \] |
✓ |
✓ |
|
\[ {}\frac {x^{2}-y^{2}}{x \left (2 x^{2}+y^{2}\right )}+\frac {\left (x^{2}+2 y^{2}\right ) y^{\prime }}{y \left (2 x^{2}+y^{2}\right )} = 0 \] |
✓ |
✓ |
|
\[ {}\frac {2 x^{2}}{x^{2}+y^{2}}+\ln \left (x^{2}+y^{2}\right )+\frac {2 x y y^{\prime }}{x^{2}+y^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+\ln \left (x \right )-y = 0 \] |
✓ |
✓ |
|
\[ {}x y+\left (x^{2}+y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x -2 x y\right ) y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y+y^{2}+x^{3} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{3}-1+y^{2} y^{\prime } x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{3} x^{3}-1\right ) y^{\prime }+x^{2} y^{4} = 0 \] |
✓ |
✓ |
|
\[ {}y \left (y-x^{2}\right )+x^{3} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y+x y^{2}+\left (x -x^{2} y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x -x \sqrt {x^{2}-y^{2}}\right ) y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}2 x y+\left (y-x^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y = x \left (-1+x^{2} y\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{x} y^{\prime } = 2 x y^{2}+{\mathrm e}^{x} y \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+y^{2}+x \right ) y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}\left (2 x +3 x^{2} y\right ) y^{\prime }+y+2 x y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y y^{\prime }+x^{4} {\mathrm e}^{x}-2 x y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y \left (1-x^{4} y^{2}\right )+x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \left (x^{2}-1\right )+x \left (x^{2}+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2} x^{2}-y+\left (2 x^{3} y+x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+y^{2}-2 y\right ) y^{\prime } = 2 x \] |
✓ |
✗ |
|
\[ {}y-x^{2} \sqrt {x^{2}-y^{2}}-x y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}y \left (x +y^{2}\right )+x \left (x -y^{2}\right ) y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}x y^{\prime }+2 y = x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-x y = {\mathrm e}^{\frac {x^{2}}{2}} \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 x y = 2 x \,{\mathrm e}^{-x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y+3 \,{\mathrm e}^{x} x^{2} \] |
✓ |
✓ |
|
\[ {}x^{\prime }+x = {\mathrm e}^{-y} \] |
✓ |
✓ |
|
\[ {}y x^{\prime }+\left (y +1\right ) x = {\mathrm e}^{y} \] |
✓ |
✓ |
|
\[ {}y+\left (2 x -3 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-2 x^{4}-2 y = 0 \] |
✓ |
✓ |
|
\[ {}1 = \left ({\mathrm e}^{y}+x \right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{2} x^{\prime }+\left (y^{2}+2 y \right ) x = 1 \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = 5 y+x +1 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+y-2 x y-2 x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (1+x \right ) y^{\prime }+2 y = \frac {{\mathrm e}^{x}}{1+x} \] |
✓ |
✓ |
|
\[ {}\cos \left (y\right )^{2}+\left (x -\tan \left (y\right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|