# |
ODE |
Mathematica |
Maple |
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (1+y^{\prime }\right ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (y+1\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 2 y y^{\prime } \] |
✗ |
✓ |
|
\[ {}2 y^{\prime \prime } = {\mathrm e}^{y} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} \] |
✓ |
✓ |
|
\[ {}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+\left (y+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (1+{y^{\prime }}^{2}\right )^{3} = a^{2} {y^{\prime \prime }}^{2} \] |
✓ |
✓ |
|
\[ {}u^{\prime \prime }-\frac {a^{2} u}{x^{\frac {2}{3}}} = 0 \] |
✓ |
✓ |
|
\[ {}u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u = 0 \] |
✓ |
✓ |
|
\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0 \] |
✓ |
✓ |
|
\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0 \] |
✓ |
✓ |
|
\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}-a^{2} u = 0 \] |
✓ |
✓ |
|
\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-a^{2} y = \frac {6 y}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+n^{2} y = \frac {6 y}{x^{2}} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (x^{2}+\frac {1}{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {25}{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+q y^{\prime } = \frac {2 y}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+{\mathrm e}^{2 x} y = n^{2} y \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\frac {y}{4 x} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime } = 10 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 16 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 24 \,{\mathrm e}^{-3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = 2 \,{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 12 \,{\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-2 y = 3 \,{\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-16 y = 40 \,{\mathrm e}^{4 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \,{\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 6 \,{\mathrm e}^{3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 100 \cos \left (4 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+12 y = 80 \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+8 y^{\prime }+25 y = 120 \sin \left (5 x \right ) \] |
✓ |
✓ |
|
\[ {}5 y^{\prime \prime }+12 y^{\prime }+20 y = 120 \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = 30 \sin \left (3 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+16 y = 16 \cos \left (4 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+17 y = 60 \,{\mathrm e}^{-4 x} \sin \left (5 x \right ) \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }+4 y^{\prime }+5 y = 40 \,{\mathrm e}^{-\frac {3 x}{2}} \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+8 y = 30 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {5 x}{2}\right ) \] |
✓ |
✓ |
|
\[ {}5 y^{\prime \prime }+6 y^{\prime }+2 y = x^{2}+6 x \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }+y^{\prime } = 2 x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = 2 x \,{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 12 x \,{\mathrm e}^{3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 16 x^{2} {\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = 8 x \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = x^{3}-1+2 \cos \left (x \right )+\left (2-4 x \right ) {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{x}+6 x -5 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = \sinh \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = 2 \sin \left (x \right )+4 x \cos \left (x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+y = 4 \,{\mathrm e}^{x}+\left (1-x \right ) \left ({\mathrm e}^{2 x}-1\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime } = 9 x \,{\mathrm e}^{-x}-6 x^{2}+4 \,{\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }+y y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }+y y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}y^{\prime \prime }+y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 y y^{\prime \prime } = {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \] |
✓ |
✓ |
|
\[ {}{y^{\prime \prime }}^{2} = k^{2} \left (1+{y^{\prime }}^{2}\right ) \] |
✓ |
✓ |
|
\[ {}k = \frac {y^{\prime \prime }}{\left (1+y^{\prime }\right )^{\frac {3}{2}}} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = 8 x^{4} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x -\frac {1}{x} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 2 x^{3} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 6 x^{2} \ln \left (x \right ) \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+y = 3 x^{2} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 2 x \] |
✓ |
✓ |
|
\[ {}x^{2} \left (2-x \right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+\left (2+x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}3 x y^{\prime \prime }-2 \left (3 x -1\right ) y^{\prime }+\left (3 x -2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x \left (1+x \right ) y^{\prime \prime }-\left (-1+x \right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}r^{\prime \prime }-6 r^{\prime }+9 r = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 10 \,{\mathrm e}^{x}+6 \cos \left (x \right ) {\mathrm e}^{-x} \] |
✓ |
✓ |
|