3.7.11 Problems 1001 to 1100

Table 3.473: Solved using series method

#

ODE

Mathematica

Maple

6474

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+p^{2} y = 0 \]

6475

\[ {}\left (-{\mathrm e}^{x}+1\right ) y^{\prime \prime }+\frac {y^{\prime }}{2}+{\mathrm e}^{x} y = 0 \]

6476

\[ {}y^{\prime \prime }+2 x y = x^{2} \]

6477

\[ {}y^{\prime \prime }-x y^{\prime }+y = x \]

6478

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{3}-x \]

6479

\[ {}2 y^{\prime \prime }+x y^{\prime }+y = 0 \]

6480

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }-y^{\prime }+y = 0 \]

6481

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

6482

\[ {}y^{\prime \prime }-\left (1+x \right ) y^{\prime }-x y = 0 \]

6483

\[ {}\left (-1+x \right ) y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 0 \]

6484

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\left (2+x \right ) y = 0 \]

6485

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (1+x \right ) y = 0 \]

6486

\[ {}x y^{\prime \prime }-4 y^{\prime }+x y = 0 \]

6487

\[ {}4 x^{2} y^{\prime \prime }+4 x^{2} y^{\prime }+2 y = 0 \]

6488

\[ {}2 x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 0 \]

6489

\[ {}x y^{\prime \prime }-\left (-1+x \right ) y^{\prime }+2 y = 0 \]

6490

\[ {}x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+y = 0 \]

6491

\[ {}x y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 0 \]

6492

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+x y = 0 \]

6493

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-3 x y^{\prime }+\left (-1+x \right ) y = 0 \]

6494

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+\left (x^{2}+2 x \right ) y^{\prime }-x y = 0 \]

6495

\[ {}x^{3} y^{\prime \prime \prime }+\left (2 x^{3}-x^{2}\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

6496

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

6497

\[ {}9 \left (-2+x \right )^{2} \left (x -3\right ) y^{\prime \prime }+6 x \left (-2+x \right ) y^{\prime }+16 y = 0 \]

6498

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+p \left (p +1\right ) y = 0 \]

6544

\[ {}y^{\prime } = y^{2}-x \]

6546

\[ {}y^{\prime }-2 y = x^{2} \]

6548

\[ {}y^{\prime } = y+x \,{\mathrm e}^{y} \]

6550

\[ {}y^{\prime \prime }+y = 0 \]

6552

\[ {}y^{\prime \prime }-y = 0 \]

6554

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]

6556

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

6558

\[ {}y^{\prime \prime }-x y = 0 \]

6559

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

6560

\[ {}y^{\prime \prime }-2 x y^{\prime }+y = 0 \]

6561

\[ {}y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

6562

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+x y = 0 \]

6563

\[ {}y^{\prime \prime }+2 x y^{\prime }+2 y = 0 \]

6564

\[ {}\left (-1+x \right ) y^{\prime \prime }+y^{\prime } = 0 \]

6565

\[ {}\left (2+x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

6566

\[ {}y^{\prime \prime }-\left (1+x \right ) y^{\prime }-y = 0 \]

6567

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-6 y = 0 \]

6568

\[ {}\left (x^{2}+2\right ) y^{\prime \prime }+3 x y^{\prime }-y = 0 \]

6569

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

6570

\[ {}\left (-1+x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

6571

\[ {}\left (1+x \right ) y^{\prime \prime }-\left (2-x \right ) y^{\prime }+y = 0 \]

6572

\[ {}y^{\prime \prime }-2 x y^{\prime }+8 y = 0 \]

6573

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]

6574

\[ {}y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

6575

\[ {}y^{\prime \prime }+{\mathrm e}^{x} y^{\prime }-y = 0 \]

6576

\[ {}\cos \left (x \right ) y^{\prime \prime }+y^{\prime }+5 y = 0 \]

6577

\[ {}\cos \left (x \right ) y^{\prime \prime }+y^{\prime }+5 y = 0 \]

6578

\[ {}y^{\prime \prime }-x y = 1 \]

6579

\[ {}y^{\prime \prime }-4 x y^{\prime }-4 y = {\mathrm e}^{x} \]

6580

\[ {}x y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

6581

\[ {}y^{\prime \prime }+5 x y^{\prime }+\sqrt {x}\, y = 0 \]

6582

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

6583

\[ {}y^{\prime \prime }+\cos \left (x \right ) y = 0 \]

6584

\[ {}x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }+3 y = 0 \]

6585

\[ {}x \left (x +3\right )^{2} y^{\prime \prime }-y = 0 \]

6586

\[ {}\left (x^{2}-9\right )^{2} y^{\prime \prime }+\left (x +3\right ) y^{\prime }+2 y = 0 \]

6587

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}+\frac {y}{\left (-1+x \right )^{3}} = 0 \]

6588

\[ {}\left (x^{3}+4 x \right ) y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

6589

\[ {}x^{2} \left (x -5\right )^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}-25\right ) y = 0 \]

6590

\[ {}\left (x^{2}+x -6\right ) y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (-2+x \right ) y = 0 \]

6591

\[ {}x \left (x^{2}+1\right )^{2} y^{\prime \prime }+y = 0 \]

6592

\[ {}x^{3} \left (x^{2}-25\right ) \left (-2+x \right )^{2} y^{\prime \prime }+3 x \left (-2+x \right ) y^{\prime }+7 \left (5+x \right ) y = 0 \]

6593

\[ {}\left (x^{3}-2 x^{2}+3 x \right )^{2} y^{\prime \prime }+x \left (x -3\right )^{2} y^{\prime }-\left (1+x \right ) y = 0 \]

6594

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+5 \left (1+x \right ) y^{\prime }+\left (x^{2}-x \right ) y = 0 \]

6595

\[ {}x y^{\prime \prime }+\left (x +3\right ) y^{\prime }+7 x^{2} y = 0 \]

6596

\[ {}x^{2} y^{\prime \prime }+\left (\frac {5}{3} x +x^{2}\right ) y^{\prime }-\frac {y}{3} = 0 \]

6597

\[ {}x y^{\prime \prime }+y^{\prime }+10 y = 0 \]

6598

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

6599

\[ {}2 x y^{\prime \prime }+5 y^{\prime }+x y = 0 \]

6600

\[ {}4 x y^{\prime \prime }+\frac {y^{\prime }}{2}+y = 0 \]

6601

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

6602

\[ {}3 x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-y = 0 \]

6603

\[ {}x^{2} y^{\prime \prime }-\left (x -\frac {2}{9}\right ) y = 0 \]

6604

\[ {}2 x y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+y = 0 \]

6605

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {4}{9}\right ) y = 0 \]

6606

\[ {}9 x^{2} y^{\prime \prime }+9 x^{2} y^{\prime }+2 y = 0 \]

6607

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (2 x -1\right ) y = 0 \]

6608

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y = 0 \]

6609

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

6610

\[ {}x y^{\prime \prime }-x y^{\prime }+y = 0 \]

6611

\[ {}y^{\prime \prime }+\frac {3 y^{\prime }}{x}-2 y = 0 \]

6612

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-y = 0 \]

6613

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

6614

\[ {}x y^{\prime \prime }+\left (x -6\right ) y^{\prime }-3 y = 0 \]

6615

\[ {}x \left (-1+x \right ) y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

6616

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{t}+\lambda y = 0 \]

6617

\[ {}x^{3} y^{\prime \prime }+y = 0 \]

6618

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

6643

\[ {}2 x y^{\prime \prime }+y^{\prime }+y = 0 \]

6644

\[ {}y^{\prime \prime }-x y^{\prime }-y = 0 \]

6645

\[ {}\left (-1+x \right ) y^{\prime \prime }+3 y = 0 \]

6646

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = 0 \]

6647

\[ {}x y^{\prime \prime }-\left (2+x \right ) y^{\prime }+2 y = 0 \]

6648

\[ {}\cos \left (x \right ) y^{\prime \prime }+y = 0 \]

6649

\[ {}y^{\prime \prime }+x y^{\prime }+2 y = 0 \]