3.7.12 Problems 1101 to 1200

Table 3.475: Solved using series method

#

ODE

Mathematica

Maple

6650

\[ {}\left (2+x \right ) y^{\prime \prime }+3 y = 0 \]

6651

\[ {}\left (1-2 \sin \left (x \right )\right ) y^{\prime \prime }+x y = 0 \]

6652

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

6653

\[ {}x y^{\prime \prime }+\left (1-\cos \left (x \right )\right ) y^{\prime }+x^{2} y = 0 \]

6654

\[ {}\left ({\mathrm e}^{x}-1-x \right ) y^{\prime \prime }+x y = 0 \]

6655

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 10 x^{3}-2 x +5 \]

6889

\[ {}y^{\prime \prime }+y = 0 \]

6890

\[ {}y^{\prime \prime }-9 y = 0 \]

6891

\[ {}y^{\prime \prime }+3 x y^{\prime }+3 y = 0 \]

6892

\[ {}\left (4 x^{2}+1\right ) y^{\prime \prime }-8 y = 0 \]

6893

\[ {}\left (-4 x^{2}+1\right ) y^{\prime \prime }+8 y = 0 \]

6894

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

6895

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+10 x y^{\prime }+20 y = 0 \]

6896

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

6897

\[ {}\left (x^{2}-9\right ) y^{\prime \prime }+3 x y^{\prime }-3 y = 0 \]

6898

\[ {}y^{\prime \prime }+2 x y^{\prime }+5 y = 0 \]

6899

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+6 x y^{\prime }+4 y = 0 \]

6900

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }-5 x y^{\prime }+3 y = 0 \]

6901

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

6902

\[ {}\left (-4 x^{2}+1\right ) y^{\prime \prime }+6 x y^{\prime }-4 y = 0 \]

6903

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }+3 x y^{\prime }-3 y = 0 \]

6905

\[ {}y^{\prime \prime }+x y^{\prime }+3 y = x^{2} \]

6906

\[ {}y^{\prime \prime }+2 x y^{\prime }+2 y = 0 \]

6907

\[ {}y^{\prime \prime }+3 x y^{\prime }+7 y = 0 \]

6908

\[ {}2 y^{\prime \prime }+9 x y^{\prime }-36 y = 0 \]

6909

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

6910

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+3 x y^{\prime }-8 y = 0 \]

6911

\[ {}\left (9 x^{2}+1\right ) y^{\prime \prime }-18 y = 0 \]

6912

\[ {}\left (3 x^{2}+1\right ) y^{\prime \prime }+13 x y^{\prime }+7 y = 0 \]

6913

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }+11 x y^{\prime }+9 y = 0 \]

6914

\[ {}y^{\prime \prime }-2 \left (x +3\right ) y^{\prime }-3 y = 0 \]

6915

\[ {}y^{\prime \prime }+\left (-2+x \right ) y = 0 \]

6916

\[ {}\left (x^{2}-2 x +2\right ) y^{\prime \prime }-4 \left (-1+x \right ) y^{\prime }+6 y = 0 \]

6917

\[ {}2 x \left (1+x \right ) y^{\prime \prime }+3 \left (1+x \right ) y^{\prime }-y = 0 \]

6918

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-1\right ) y = 0 \]

6919

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }-\left (4 x^{2}+1\right ) y = 0 \]

6920

\[ {}4 x y^{\prime \prime }+3 y^{\prime }+3 y = 0 \]

6921

\[ {}2 x^{2} \left (1-x \right ) y^{\prime \prime }-x \left (1+7 x \right ) y^{\prime }+y = 0 \]

6922

\[ {}2 x y^{\prime \prime }+5 \left (-2 x +1\right ) y^{\prime }-5 y = 0 \]

6923

\[ {}8 x^{2} y^{\prime \prime }+10 x y^{\prime }-\left (1+x \right ) y = 0 \]

6924

\[ {}2 x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-2 y = 0 \]

6925

\[ {}2 x \left (x +3\right ) y^{\prime \prime }-3 \left (1+x \right ) y^{\prime }+2 y = 0 \]

6926

\[ {}2 x y^{\prime \prime }+\left (-2 x^{2}+1\right ) y^{\prime }-4 x y = 0 \]

6927

\[ {}x \left (4-x \right ) y^{\prime \prime }+\left (2-x \right ) y^{\prime }+4 y = 0 \]

6928

\[ {}3 x^{2} y^{\prime \prime }+x y^{\prime }-\left (1+x \right ) y = 0 \]

6929

\[ {}2 x y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+4 y = 0 \]

6930

\[ {}2 x y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }-5 y = 0 \]

6931

\[ {}2 x^{2} y^{\prime \prime }-3 x \left (1-x \right ) y^{\prime }+2 y = 0 \]

6932

\[ {}2 x^{2} y^{\prime \prime }+x \left (4 x -1\right ) y^{\prime }+2 \left (3 x -1\right ) y = 0 \]

6933

\[ {}2 x y^{\prime \prime }-\left (2 x^{2}+1\right ) y^{\prime }-x y = 0 \]

6934

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

6935

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \]

6936

\[ {}9 x^{2} y^{\prime \prime }+2 y = 0 \]

6937

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }-2 y = 0 \]

6948

\[ {}x^{2} y^{\prime \prime }-x \left (1+x \right ) y^{\prime }+y = 0 \]

6949

\[ {}4 x^{2} y^{\prime \prime }+\left (-2 x +1\right ) y = 0 \]

6950

\[ {}x^{2} y^{\prime \prime }+x \left (x -3\right ) y^{\prime }+4 y = 0 \]

6951

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (4 x^{2}+1\right ) y = 0 \]

6952

\[ {}x \left (1+x \right ) y^{\prime \prime }+\left (1+5 x \right ) y^{\prime }+3 y = 0 \]

6953

\[ {}x^{2} y^{\prime \prime }-x \left (3 x +1\right ) y^{\prime }+\left (1-6 x \right ) y = 0 \]

6954

\[ {}x^{2} y^{\prime \prime }+x \left (-1+x \right ) y^{\prime }+\left (1-x \right ) y = 0 \]

6955

\[ {}x \left (-2+x \right ) y^{\prime \prime }+2 \left (-1+x \right ) y^{\prime }-2 y = 0 \]

6956

\[ {}x \left (-2+x \right ) y^{\prime \prime }+2 \left (-1+x \right ) y^{\prime }-2 y = 0 \]

6957

\[ {}4 \left (x -4\right )^{2} y^{\prime \prime }+\left (x -4\right ) \left (x -8\right ) y^{\prime }+x y = 0 \]

6959

\[ {}x y^{\prime \prime }+y^{\prime }-x y = 0 \]

6960

\[ {}x y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }-x y = 0 \]

6961

\[ {}x^{2} y^{\prime \prime }+x \left (2 x +3\right ) y^{\prime }+\left (3 x +1\right ) y = 0 \]

6962

\[ {}4 x^{2} y^{\prime \prime }+8 x \left (1+x \right ) y^{\prime }+y = 0 \]

6963

\[ {}x^{2} y^{\prime \prime }+3 x \left (1+x \right ) y^{\prime }+\left (1-3 x \right ) y = 0 \]

6964

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-y = 0 \]

6965

\[ {}x^{2} y^{\prime \prime }+2 x \left (-2+x \right ) y^{\prime }+2 \left (2-3 x \right ) y = 0 \]

6966

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }+2 x \left (1+6 x \right ) y^{\prime }-2 y = 0 \]

6967

\[ {}x^{2} y^{\prime \prime }+x \left (2+3 x \right ) y^{\prime }-2 y = 0 \]

6968

\[ {}x y^{\prime \prime }-\left (x +3\right ) y^{\prime }+2 y = 0 \]

6969

\[ {}x \left (1+x \right ) y^{\prime \prime }+\left (5+x \right ) y^{\prime }-4 y = 0 \]

6970

\[ {}x \left (1+x \right ) y^{\prime \prime }+\left (5+x \right ) y^{\prime }-4 y = 0 \]

6971

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

6972

\[ {}x \left (1-x \right ) y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

6973

\[ {}x \left (1-x \right ) y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

6974

\[ {}x y^{\prime \prime }+\left (3 x +4\right ) y^{\prime }+3 y = 0 \]

6975

\[ {}x y^{\prime \prime }-2 \left (2+x \right ) y^{\prime }+4 y = 0 \]

6976

\[ {}x y^{\prime \prime }+\left (2 x +3\right ) y^{\prime }+4 y = 0 \]

6977

\[ {}x \left (x +3\right ) y^{\prime \prime }-9 y^{\prime }-6 y = 0 \]

6978

\[ {}x \left (-2 x +1\right ) y^{\prime \prime }-2 \left (2+x \right ) y^{\prime }+8 y = 0 \]

6979

\[ {}x y^{\prime \prime }+\left (x^{3}-1\right ) y^{\prime }+x^{2} y = 0 \]

6980

\[ {}x^{2} \left (4 x -1\right ) y^{\prime \prime }+x \left (1+5 x \right ) y^{\prime }+3 y = 0 \]

6981

\[ {}x y^{\prime \prime }+y = 0 \]

6982

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+\left (3+4 x \right ) y = 0 \]

6983

\[ {}2 x y^{\prime \prime }+6 y^{\prime }+y = 0 \]

6984

\[ {}4 x^{2} y^{\prime \prime }+2 x \left (2-x \right ) y^{\prime }-\left (3 x +1\right ) y = 0 \]

6985

\[ {}x^{2} y^{\prime \prime }-x \left (x +6\right ) y^{\prime }+10 y = 0 \]

6986

\[ {}x y^{\prime \prime }+\left (2 x +3\right ) y^{\prime }+8 y = 0 \]

6987

\[ {}x \left (1-x \right ) y^{\prime \prime }+2 \left (1-x \right ) y^{\prime }+2 y = 0 \]

6988

\[ {}x \left (1-x \right ) y^{\prime \prime }+2 \left (1-x \right ) y^{\prime }+2 y = 0 \]

6990

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

6991

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+\left (8+5 x \right ) y = 0 \]

6992

\[ {}x y^{\prime \prime }+\left (3-x \right ) y^{\prime }-5 y = 0 \]

6993

\[ {}9 x^{2} y^{\prime \prime }-15 x y^{\prime }+7 \left (1+x \right ) y = 0 \]

6994

\[ {}x^{2} y^{\prime \prime }+x \left (-2 x +1\right ) y^{\prime }-\left (1+x \right ) y = 0 \]

6995

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (x^{3}+x +1\right ) y = 0 \]