3.7.12 Problems 1101 to 1200

Table 3.475: Solved using series method

#

ODE

Mathematica

Maple

6650

(2+x)y+3y=0

6651

(12sin(x))y+xy=0

6652

y+xy+y=0

6653

xy+(1cos(x))y+x2y=0

6654

(ex1x)y+xy=0

6655

y+x2y+2xy=10x32x+5

6889

y+y=0

6890

y9y=0

6891

y+3xy+3y=0

6892

(4x2+1)y8y=0

6893

(4x2+1)y+8y=0

6894

(x2+1)y4xy+6y=0

6895

(x2+1)y+10xy+20y=0

6896

(x2+4)y+2xy12y=0

6897

(x29)y+3xy3y=0

6898

y+2xy+5y=0

6899

(x2+4)y+6xy+4y=0

6900

(2x2+1)y5xy+3y=0

6901

y+x2y=0

6902

(4x2+1)y+6xy4y=0

6903

(2x2+1)y+3xy3y=0

6905

y+xy+3y=x2

6906

y+2xy+2y=0

6907

y+3xy+7y=0

6908

2y+9xy36y=0

6909

(x2+4)y+xy9y=0

6910

(x2+4)y+3xy8y=0

6911

(9x2+1)y18y=0

6912

(3x2+1)y+13xy+7y=0

6913

(2x2+1)y+11xy+9y=0

6914

y2(x+3)y3y=0

6915

y+(2+x)y=0

6916

(x22x+2)y4(1+x)y+6y=0

6917

2x(1+x)y+3(1+x)yy=0

6918

4x2y+4xy+(4x21)y=0

6919

4x2y+4xy(4x2+1)y=0

6920

4xy+3y+3y=0

6921

2x2(1x)yx(1+7x)y+y=0

6922

2xy+5(2x+1)y5y=0

6923

8x2y+10xy(1+x)y=0

6924

2xy+(2x)y2y=0

6925

2x(x+3)y3(1+x)y+2y=0

6926

2xy+(2x2+1)y4xy=0

6927

x(4x)y+(2x)y+4y=0

6928

3x2y+xy(1+x)y=0

6929

2xy+(2x+1)y+4y=0

6930

2xy+(2x+1)y5y=0

6931

2x2y3x(1x)y+2y=0

6932

2x2y+x(4x1)y+2(3x1)y=0

6933

2xy(2x2+1)yxy=0

6934

2x2y+xyy=0

6935

2x2y3xy+2y=0

6936

9x2y+2y=0

6937

2x2y+5xy2y=0

6948

x2yx(1+x)y+y=0

6949

4x2y+(2x+1)y=0

6950

x2y+x(x3)y+4y=0

6951

x2y+3xy+(4x2+1)y=0

6952

x(1+x)y+(1+5x)y+3y=0

6953

x2yx(3x+1)y+(16x)y=0

6954

x2y+x(1+x)y+(1x)y=0

6955

x(2+x)y+2(1+x)y2y=0

6956

x(2+x)y+2(1+x)y2y=0

6957

4(x4)2y+(x4)(x8)y+xy=0

6959

xy+yxy=0

6960

xy+(x2+1)yxy=0

6961

x2y+x(2x+3)y+(3x+1)y=0

6962

4x2y+8x(1+x)y+y=0

6963

x2y+3x(1+x)y+(13x)y=0

6964

xy+(1x)yy=0

6965

x2y+2x(2+x)y+2(23x)y=0

6966

x2(2x+1)y+2x(1+6x)y2y=0

6967

x2y+x(2+3x)y2y=0

6968

xy(x+3)y+2y=0

6969

x(1+x)y+(5+x)y4y=0

6970

x(1+x)y+(5+x)y4y=0

6971

x2y+x2y2y=0

6972

x(1x)y3y+2y=0

6973

x(1x)y3y+2y=0

6974

xy+(3x+4)y+3y=0

6975

xy2(2+x)y+4y=0

6976

xy+(2x+3)y+4y=0

6977

x(x+3)y9y6y=0

6978

x(2x+1)y2(2+x)y+8y=0

6979

xy+(x31)y+x2y=0

6980

x2(4x1)y+x(1+5x)y+3y=0

6981

xy+y=0

6982

x2y3xy+(3+4x)y=0

6983

2xy+6y+y=0

6984

4x2y+2x(2x)y(3x+1)y=0

6985

x2yx(x+6)y+10y=0

6986

xy+(2x+3)y+8y=0

6987

x(1x)y+2(1x)y+2y=0

6988

x(1x)y+2(1x)y+2y=0

6990

x2y+xy+(x21)y=0

6991

x2y5xy+(8+5x)y=0

6992

xy+(3x)y5y=0

6993

9x2y15xy+7(1+x)y=0

6994

x2y+x(2x+1)y(1+x)y=0

6995

x2y+3xy+(x3+x+1)y=0