3.7.13 Problems 1201 to 1300

Table 3.477: Solved using series method

#

ODE

Mathematica

Maple

6996

2x(1x)y+(2x+1)y+(2+x)y=0

6997

xy+y+x(1+x)y=0

6998

x2y+x(1+x)y(6x23x+1)y=0

6999

xy+xy+(x4+1)y=0

7000

x(2+x)2y2(2+x)y+2y=0

7001

x(2+x)2y2(2+x)y+2y=0

7002

2xy+(1x)y(1+x)y=0

7003

xy(2+x)yy=0

7004

xy(2+x)y2y=0

7005

x2y+2x2y2y=0

7006

2x2yx(2x+7)y+2(5+x)y=0

7007

x2(x2+1)y+2x(x2+3)y+6y=0

7008

(x2+1)y10xy18y=0

7009

2xy+(2x+1)y3y=0

7010

y+2xy8y=0

7011

x(x2+1)y(x2+7)y+4xy=0

7012

2x2yx(2x+1)y+(1+4x)y=0

7013

4x2y2x(2+x)y+(x+3)y=0

7014

x2yx(x2+1)y+(x2+1)y=0

7015

2xy+y+y=0

7016

x2y+x(x23)y+4y=0

7017

4x2yx2y+y=0

7018

(x2+1)y2y=0

7019

2x2yx(2x+1)y+(3x+1)y=0

7020

4x2y+3x2y+(3x+1)y=0

7021

xy+(x2+1)y+2xy=0

7022

4x2y+2x2y(x+3)y=0

7023

x(x2+1)y+5(x2+1)y4xy=0

7024

x2y+x(x+3)y+(2x+1)y=0

7025

x2y+xy(x2+4)y=0

7026

x(2x+1)y2(2+x)y+18y=0

7027

xy+(2x)yy=0

7028

x2y3xy+4(1+x)y=0

7222

2x2yxy+(x2+1)y=0

7223

2x2yxy+(x2+1)y=1

7224

2x2yxy+(x2+1)y=1+x

7225

2x2yxy+(x2+1)y=x

7226

2x2yxy+(x2+1)y=x2+x+1

7227

2x2yxy+(x2+1)y=x2

7228

2x2yxy+(x2+1)y=x2+1

7229

2x2yxy+(x2+1)y=x4

7230

2x2yxy+(x2+1)y=sin(x)

7231

2x2yxy+(x2+1)y=sin(x)+1

7232

2x2yxy+(x2+1)y=xsin(x)

7233

2x2yxy+(x2+1)y=cos(x)+sin(x)

7234

x2y+(cos(x)1)y+exy=0

7235

(2+x)y+yx+(1+x)y=0

7236

(2+x)y+yx+(1+x)y=0

7237

(1+x)(3x1)y+cos(x)y3xy=0

7238

xy+2y+xy=0

7239

2x2y+3xyxy=x2+2x

7240

2x2yxy+(x2+1)y=1

7241

2x2y+2xyxy=1

7242

y+(x6)y=0

7243

x2y+(3x2+2x)y2y=0

7244

2x2yxy+(x2+1)y=x2+cos(x)

7245

2x2yxy+(x2+1)y=cos(x)

7246

2x2yxy+(x2+1)y=x3+cos(x)

7247

2x2yxy+(x2+1)y=x3cos(x)

7248

2x2yxy+(x2+1)y=x3cos(x)+sin(x)2

7249

2x2yxy+(x2+1)y=ln(x)

7250

2x2(x2+x+1)y+x(11x2+11x+9)y+(7x2+10x+6)y=0

7251

x2(x+3)y+5x(1+x)y(14x)y=0

7252

x2(x2+2)yx(4x2+3)y+(2x2+2)y=0

7255

x2y+y=0

7256

xy+yy=0

7257

4xy+2y+y=0

7258

xy+yy=0

7259

xy+(1+x)y+2y=0

7260

x(1+x)y+3xy+y=0

7261

x2(x22x+1)yx(x+3)y+(x+4)y=0

7262

2x2(2+x)y+5x2y+(1+x)y=0

7263

2x2y+xy+(x5)y=0

7264

2x2y+2xyxy=sin(x)

7265

2x2y+2xyxy=xsin(x)

7266

2x2y+2xyxy=cos(x)sin(x)

7267

2x2y+2xyxy=x3+xsin(x)

7268

cos(x)y+2xyxy=0

7269

x2y+4xy+(x2+2)y=0

7270

x2y+xyxy=0

7271

x2y+xy+(x214)y=0

7272

(x2x)yxy+y=0

7273

x2y+(x2+6x)y+xy=0

7274

x2yxy+(x28)y=0

7275

x2y9xy+25y=0

7276

x2yxy(x2+54)y=0

7277

x2y+xy+(x214)y=0

7278

xy+(2x)yy=0

7279

2x2y+3xyy=0

7280

2x2y+5xy+4y=0

7281

x2y+3xy+4x4y=0

7282

x2yxy=0

7283

(x2+1)y+y+y=xex

7290

y+(1+x)y=0

7300

y+y=1x

7301

y+y=1x2

7302

xy+y=0

7303

y=1x

7304

y=1x

7305

y+y=1x