3.7.13 Problems 1201 to 1300

Table 3.477: Solved using series method

#

ODE

Mathematica

Maple

6996

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+\left (-2 x +1\right ) y^{\prime }+\left (2+x \right ) y = 0 \]

6997

\[ {}x y^{\prime \prime }+y^{\prime }+x \left (1+x \right ) y = 0 \]

6998

\[ {}x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }-\left (6 x^{2}-3 x +1\right ) y = 0 \]

6999

\[ {}x y^{\prime \prime }+x y^{\prime }+\left (x^{4}+1\right ) y = 0 \]

7000

\[ {}x \left (-2+x \right )^{2} y^{\prime \prime }-2 \left (-2+x \right ) y^{\prime }+2 y = 0 \]

7001

\[ {}x \left (-2+x \right )^{2} y^{\prime \prime }-2 \left (-2+x \right ) y^{\prime }+2 y = 0 \]

7002

\[ {}2 x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-\left (1+x \right ) y = 0 \]

7003

\[ {}x y^{\prime \prime }-\left (2+x \right ) y^{\prime }-y = 0 \]

7004

\[ {}x y^{\prime \prime }-\left (2+x \right ) y^{\prime }-2 y = 0 \]

7005

\[ {}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-2 y = 0 \]

7006

\[ {}2 x^{2} y^{\prime \prime }-x \left (2 x +7\right ) y^{\prime }+2 \left (5+x \right ) y = 0 \]

7007

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (x^{2}+3\right ) y^{\prime }+6 y = 0 \]

7008

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-10 x y^{\prime }-18 y = 0 \]

7009

\[ {}2 x y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }-3 y = 0 \]

7010

\[ {}y^{\prime \prime }+2 x y^{\prime }-8 y = 0 \]

7011

\[ {}x \left (-x^{2}+1\right ) y^{\prime \prime }-\left (x^{2}+7\right ) y^{\prime }+4 x y = 0 \]

7012

\[ {}2 x^{2} y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+\left (1+4 x \right ) y = 0 \]

7013

\[ {}4 x^{2} y^{\prime \prime }-2 x \left (2+x \right ) y^{\prime }+\left (x +3\right ) y = 0 \]

7014

\[ {}x^{2} y^{\prime \prime }-x \left (x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

7015

\[ {}2 x y^{\prime \prime }+y^{\prime }+y = 0 \]

7016

\[ {}x^{2} y^{\prime \prime }+x \left (x^{2}-3\right ) y^{\prime }+4 y = 0 \]

7017

\[ {}4 x^{2} y^{\prime \prime }-x^{2} y^{\prime }+y = 0 \]

7018

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y = 0 \]

7019

\[ {}2 x^{2} y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+\left (3 x +1\right ) y = 0 \]

7020

\[ {}4 x^{2} y^{\prime \prime }+3 x^{2} y^{\prime }+\left (3 x +1\right ) y = 0 \]

7021

\[ {}x y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+2 x y = 0 \]

7022

\[ {}4 x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-\left (x +3\right ) y = 0 \]

7023

\[ {}x \left (-x^{2}+1\right ) y^{\prime \prime }+5 \left (-x^{2}+1\right ) y^{\prime }-4 x y = 0 \]

7024

\[ {}x^{2} y^{\prime \prime }+x \left (x +3\right ) y^{\prime }+\left (2 x +1\right ) y = 0 \]

7025

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (x^{2}+4\right ) y = 0 \]

7026

\[ {}x \left (-2 x +1\right ) y^{\prime \prime }-2 \left (2+x \right ) y^{\prime }+18 y = 0 \]

7027

\[ {}x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-y = 0 \]

7028

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 \left (1+x \right ) y = 0 \]

7222

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

7223

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 1 \]

7224

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 1+x \]

7225

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x \]

7226

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2}+x +1 \]

7227

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2} \]

7228

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2}+1 \]

7229

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{4} \]

7230

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \sin \left (x \right ) \]

7231

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \sin \left (x \right )+1 \]

7232

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x \sin \left (x \right ) \]

7233

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \cos \left (x \right )+\sin \left (x \right ) \]

7234

\[ {}x^{2} y^{\prime \prime }+\left (\cos \left (x \right )-1\right ) y^{\prime }+{\mathrm e}^{x} y = 0 \]

7235

\[ {}\left (-2+x \right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1+x \right ) y = 0 \]

7236

\[ {}\left (-2+x \right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1+x \right ) y = 0 \]

7237

\[ {}\left (1+x \right ) \left (3 x -1\right ) y^{\prime \prime }+\cos \left (x \right ) y^{\prime }-3 x y = 0 \]

7238

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

7239

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-x y = x^{2}+2 x \]

7240

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 1 \]

7241

\[ {}2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = 1 \]

7242

\[ {}y^{\prime \prime }+\left (x -6\right ) y = 0 \]

7243

\[ {}x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y = 0 \]

7244

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2}+\cos \left (x \right ) \]

7245

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \cos \left (x \right ) \]

7246

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{3}+\cos \left (x \right ) \]

7247

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{3} \cos \left (x \right ) \]

7248

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{3} \cos \left (x \right )+\sin \left (x \right )^{2} \]

7249

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \ln \left (x \right ) \]

7250

\[ {}2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \]

7251

\[ {}x^{2} \left (x +3\right ) y^{\prime \prime }+5 x \left (1+x \right ) y^{\prime }-\left (1-4 x \right ) y = 0 \]

7252

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (4 x^{2}+3\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y = 0 \]

7255

\[ {}x^{2} y^{\prime \prime }+y = 0 \]

7256

\[ {}x y^{\prime \prime }+y^{\prime }-y = 0 \]

7257

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \]

7258

\[ {}x y^{\prime \prime }+y^{\prime }-y = 0 \]

7259

\[ {}x y^{\prime \prime }+\left (1+x \right ) y^{\prime }+2 y = 0 \]

7260

\[ {}x \left (-1+x \right ) y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

7261

\[ {}x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y = 0 \]

7262

\[ {}2 x^{2} \left (2+x \right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (1+x \right ) y = 0 \]

7263

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }+\left (x -5\right ) y = 0 \]

7264

\[ {}2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = \sin \left (x \right ) \]

7265

\[ {}2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = x \sin \left (x \right ) \]

7266

\[ {}2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = \cos \left (x \right ) \sin \left (x \right ) \]

7267

\[ {}2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = x^{3}+x \sin \left (x \right ) \]

7268

\[ {}\cos \left (x \right ) y^{\prime \prime }+2 x y^{\prime }-x y = 0 \]

7269

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

7270

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-x y = 0 \]

7271

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

7272

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

7273

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}+6 x \right ) y^{\prime }+x y = 0 \]

7274

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}-8\right ) y = 0 \]

7275

\[ {}x^{2} y^{\prime \prime }-9 x y^{\prime }+25 y = 0 \]

7276

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-\left (x^{2}+\frac {5}{4}\right ) y = 0 \]

7277

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

7278

\[ {}x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-y = 0 \]

7279

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = 0 \]

7280

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

7281

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+4 x^{4} y = 0 \]

7282

\[ {}x^{2} y^{\prime \prime }-x y = 0 \]

7283

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime }+y = x \,{\mathrm e}^{x} \]

7290

\[ {}y^{\prime \prime }+\left (-1+x \right ) y = 0 \]

7300

\[ {}y^{\prime }+y = \frac {1}{x} \]

7301

\[ {}y^{\prime }+y = \frac {1}{x^{2}} \]

7302

\[ {}x y^{\prime }+y = 0 \]

7303

\[ {}y^{\prime } = \frac {1}{x} \]

7304

\[ {}y^{\prime \prime } = \frac {1}{x} \]

7305

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{x} \]