3.7.14 Problems 1301 to 1400

Table 3.479: Solved using series method

#

ODE

Mathematica

Maple

7306

y+y=1x

7307

y+y+y=1x

7311

y+y=eacos(x)

7484

x2yx(x+6)y+10y=0

7485

x2y+xy+(x25)y=0

11884

y+xy+y=0

11885

y+8xy4y=0

11886

y+xy+(2x2+1)y=0

11887

y+xy+(x24)y=0

11888

y+xy+(2+3x)y=0

11889

yxy+(3x2)y=0

11890

(x2+1)y+xy+xy=0

11891

(1+x)y(3x2)y+2xy=0

11892

(x31)y+x2y+xy=0

11893

(x+3)y+(2+x)y+y=0

11894

yxyy=0

11895

y+xy2y=0

11896

(x2+1)y+xy+2xy=0

11897

(2x23)y2xy+y=0

11898

x2y+xy+y=0

11899

x2y+3xyy=0

11900

xy+y+2y=0

11901

(x2+1)y2xy+n(n+1)y=0

11902

(x23x)y+(2+x)y+y=0

11903

(x3+x2)y+(x22x)y+4y=0

11904

(x42x3+x2)y+2(1+x)y+x2y=0

11905

(x5+x46x3)y+x2y+(2+x)y=0

11906

2x2y+xy+(x21)y=0

11907

2x2y+xy+(2x23)y=0

11908

x2yxy+(x2+89)y=0

11909

x2yxy+(2x2+59)y=0

11910

x2y+xy+(x219)y=0

11911

2xy+y+2y=0

11912

3xy(2+x)y2y=0

11913

xy+2y+xy=0

11914

x2y+xy+(x214)y=0

11915

x2y+(x4+x)yy=0

11916

xy(x2+2)y+xy=0

11917

x2y+x2y2y=0

11918

(2x2x)y+(2x2)y+(2x2+3x2)y=0

11919

x2yxy+3y4=0

11920

x2y+xy+(1+x)y=0

11921

x2y+(x3x)y3y=0

11922

x2yxy+8(x21)y=0

11923

x2y+x2y3y4=0

11924

xy+y+2y=0

11925

2xy+6y+y=0

11926

x2yxy+(x2+1)y=0

11927

x2yxy+(x23)y=0

12071

(x2+1)y2xy+n(n+1)y=0

12072

yxy+y=0

12073

(x2+1)y+y=0

12074

2xy+y2y=0

12075

y2xy4y=0

12076

y2xy+4y=0

12077

x(1x)y3xyy=0

12078

x2y+xyx2y=0

12079

x2y+xy+(x21)y=0

12080

x2y+xy+(n2+x2)y=0

12178

y+4xy=0

12402

x(1x)y+(15x)y4y=0

12403

(x21)2y+(1+x)yy=0

12404

xy+4yxy=0

12405

2xy+(1+x)yky=0

12406

x3y+x2y+y=0

12407

x2y+y2y=0

12408

2x2y+x(1x)yy=0

12409

x(1+x)y+3xy+y=0

13911

y2y=0

13912

y2xy=0

13913

y+2y2x1=0

13914

(x3)y2y=0

13915

(x2+1)y2xy=0

13916

y+y1+x=0

13917

y+y1+x=0

13918

(1x)y2y=0

13919

(x3+2)y3x2y=0

13920

(x3+2)y+3x2y=0

13921

(1+x)yxy=0

13922

(1+x)y+(1x)y=0

13923

(x2+1)y2y=0

13924

y+xy+y=0

13925

(x2+4)y+2xy=0

13926

y3x2y=0

13927

(x2+4)y5xy3y=0

13928

(x2+1)yxy+4y=0

13929

y2xy+6y=0

13930

(x26x)y+4(x3)y+2y=0

13931

y+(2+x)y+2y=0

13932

(x22x+2)y+(1x)y3y=0

13933

y2yxy=0

13934

yxy2xy=0

13935

(x2+1)yxy+λy=0

13936

(x2+1)y2xy+λy=0

13937

y+4y=0

13938

yx2y=0

13939

y+e2xy=0

13940

sin(x)yy=0

13941

y+xy=sin(x)

13942

yysin(x)xy=0