3.7.14 Problems 1301 to 1400

Table 3.479: Solved using series method

#

ODE

Mathematica

Maple

7306

\[ {}y^{\prime \prime }+y = \frac {1}{x} \]

7307

\[ {}y^{\prime \prime }+y^{\prime }+y = \frac {1}{x} \]

7311

\[ {}y^{\prime \prime }+y = {\mathrm e}^{a \cos \left (x \right )} \]

7484

\[ {}x^{2} y^{\prime \prime }-x \left (x +6\right ) y^{\prime }+10 y = 0 \]

7485

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-5\right ) y = 0 \]

11884

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

11885

\[ {}y^{\prime \prime }+8 x y^{\prime }-4 y = 0 \]

11886

\[ {}y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}+1\right ) y = 0 \]

11887

\[ {}y^{\prime \prime }+x y^{\prime }+\left (x^{2}-4\right ) y = 0 \]

11888

\[ {}y^{\prime \prime }+x y^{\prime }+\left (2+3 x \right ) y = 0 \]

11889

\[ {}y^{\prime \prime }-x y^{\prime }+\left (3 x -2\right ) y = 0 \]

11890

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+x y = 0 \]

11891

\[ {}\left (-1+x \right ) y^{\prime \prime }-\left (3 x -2\right ) y^{\prime }+2 x y = 0 \]

11892

\[ {}\left (x^{3}-1\right ) y^{\prime \prime }+x^{2} y^{\prime }+x y = 0 \]

11893

\[ {}\left (x +3\right ) y^{\prime \prime }+\left (2+x \right ) y^{\prime }+y = 0 \]

11894

\[ {}y^{\prime \prime }-x y^{\prime }-y = 0 \]

11895

\[ {}y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

11896

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+2 x y = 0 \]

11897

\[ {}\left (2 x^{2}-3\right ) y^{\prime \prime }-2 x y^{\prime }+y = 0 \]

11898

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

11899

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-y = 0 \]

11900

\[ {}x y^{\prime \prime }+y^{\prime }+2 y = 0 \]

11901

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

11902

\[ {}\left (x^{2}-3 x \right ) y^{\prime \prime }+\left (2+x \right ) y^{\prime }+y = 0 \]

11903

\[ {}\left (x^{3}+x^{2}\right ) y^{\prime \prime }+\left (x^{2}-2 x \right ) y^{\prime }+4 y = 0 \]

11904

\[ {}\left (x^{4}-2 x^{3}+x^{2}\right ) y^{\prime \prime }+2 \left (-1+x \right ) y^{\prime }+x^{2} y = 0 \]

11905

\[ {}\left (x^{5}+x^{4}-6 x^{3}\right ) y^{\prime \prime }+x^{2} y^{\prime }+\left (-2+x \right ) y = 0 \]

11906

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

11907

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}-3\right ) y = 0 \]

11908

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+\frac {8}{9}\right ) y = 0 \]

11909

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\left (2 x^{2}+\frac {5}{9}\right ) y = 0 \]

11910

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

11911

\[ {}2 x y^{\prime \prime }+y^{\prime }+2 y = 0 \]

11912

\[ {}3 x y^{\prime \prime }-\left (-2+x \right ) y^{\prime }-2 y = 0 \]

11913

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

11914

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

11915

\[ {}x^{2} y^{\prime \prime }+\left (x^{4}+x \right ) y^{\prime }-y = 0 \]

11916

\[ {}x y^{\prime \prime }-\left (x^{2}+2\right ) y^{\prime }+x y = 0 \]

11917

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

11918

\[ {}\left (2 x^{2}-x \right ) y^{\prime \prime }+\left (2 x -2\right ) y^{\prime }+\left (-2 x^{2}+3 x -2\right ) y = 0 \]

11919

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\frac {3 y}{4} = 0 \]

11920

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-1+x \right ) y = 0 \]

11921

\[ {}x^{2} y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }-3 y = 0 \]

11922

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+8 \left (x^{2}-1\right ) y = 0 \]

11923

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\frac {3 y}{4} = 0 \]

11924

\[ {}x y^{\prime \prime }+y^{\prime }+2 y = 0 \]

11925

\[ {}2 x y^{\prime \prime }+6 y^{\prime }+y = 0 \]

11926

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

11927

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}-3\right ) y = 0 \]

12071

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

12072

\[ {}y^{\prime \prime }-x y^{\prime }+y = 0 \]

12073

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y = 0 \]

12074

\[ {}2 x y^{\prime \prime }+y^{\prime }-2 y = 0 \]

12075

\[ {}y^{\prime \prime }-2 x y^{\prime }-4 y = 0 \]

12076

\[ {}y^{\prime \prime }-2 x y^{\prime }+4 y = 0 \]

12077

\[ {}x \left (1-x \right ) y^{\prime \prime }-3 x y^{\prime }-y = 0 \]

12078

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-x^{2} y = 0 \]

12079

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

12080

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-n^{2}+x^{2}\right ) y = 0 \]

12178

\[ {}y^{\prime \prime }+4 x y = 0 \]

12402

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (1-5 x \right ) y^{\prime }-4 y = 0 \]

12403

\[ {}\left (x^{2}-1\right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }-y = 0 \]

12404

\[ {}x y^{\prime \prime }+4 y^{\prime }-x y = 0 \]

12405

\[ {}2 x y^{\prime \prime }+\left (1+x \right ) y^{\prime }-k y = 0 \]

12406

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

12407

\[ {}x^{2} y^{\prime \prime }+y^{\prime }-2 y = 0 \]

12408

\[ {}2 x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-y = 0 \]

12409

\[ {}x \left (-1+x \right ) y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

13911

\[ {}y^{\prime }-2 y = 0 \]

13912

\[ {}y^{\prime }-2 x y = 0 \]

13913

\[ {}y^{\prime }+\frac {2 y}{2 x -1} = 0 \]

13914

\[ {}\left (x -3\right ) y^{\prime }-2 y = 0 \]

13915

\[ {}\left (x^{2}+1\right ) y^{\prime }-2 x y = 0 \]

13916

\[ {}y^{\prime }+\frac {y}{-1+x} = 0 \]

13917

\[ {}y^{\prime }+\frac {y}{-1+x} = 0 \]

13918

\[ {}\left (1-x \right ) y^{\prime }-2 y = 0 \]

13919

\[ {}\left (-x^{3}+2\right ) y^{\prime }-3 x^{2} y = 0 \]

13920

\[ {}\left (-x^{3}+2\right ) y^{\prime }+3 x^{2} y = 0 \]

13921

\[ {}\left (1+x \right ) y^{\prime }-x y = 0 \]

13922

\[ {}\left (1+x \right ) y^{\prime }+\left (1-x \right ) y = 0 \]

13923

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y = 0 \]

13924

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

13925

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]

13926

\[ {}y^{\prime \prime }-3 x^{2} y = 0 \]

13927

\[ {}\left (-x^{2}+4\right ) y^{\prime \prime }-5 x y^{\prime }-3 y = 0 \]

13928

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0 \]

13929

\[ {}y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

13930

\[ {}\left (x^{2}-6 x \right ) y^{\prime \prime }+4 \left (x -3\right ) y^{\prime }+2 y = 0 \]

13931

\[ {}y^{\prime \prime }+\left (2+x \right ) y^{\prime }+2 y = 0 \]

13932

\[ {}\left (x^{2}-2 x +2\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }-3 y = 0 \]

13933

\[ {}y^{\prime \prime }-2 y^{\prime }-x y = 0 \]

13934

\[ {}y^{\prime \prime }-x y^{\prime }-2 x y = 0 \]

13935

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\lambda y = 0 \]

13936

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\lambda y = 0 \]

13937

\[ {}y^{\prime \prime }+4 y = 0 \]

13938

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

13939

\[ {}y^{\prime \prime }+{\mathrm e}^{2 x} y = 0 \]

13940

\[ {}\sin \left (x \right ) y^{\prime \prime }-y = 0 \]

13941

\[ {}y^{\prime \prime }+x y = \sin \left (x \right ) \]

13942

\[ {}y^{\prime \prime }-y^{\prime } \sin \left (x \right )-x y = 0 \]