# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime } = {\mathrm e}^{\left (-t +y\right )^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (4 y+{\mathrm e}^{-t^{2}}\right ) {\mathrm e}^{2 y} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = {\mathrm e}^{-t}+\ln \left (1+y^{2}\right ) \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \frac {\left (1+\cos \left (4 t \right )\right ) y}{4}-\frac {\left (1-\cos \left (4 t \right )\right ) y^{2}}{800} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t^{2}+y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t \left (1+y\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t \sqrt {1-y^{2}} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{2}+x +\left (y-x^{2} y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 x y \] |
✓ |
✓ |
|
\[ {}x y^{2}+x +\left (x^{2} y-y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\sqrt {-x^{2}+1}+\sqrt {1-y^{2}}\, y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (1+x \right ) y^{\prime }-1+y = 0 \] |
✓ |
✓ |
|
\[ {}\tan \left (x \right ) y^{\prime }-y = 1 \] |
✓ |
✓ |
|
\[ {}y+3+\cot \left (x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x}{y} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = 1-\sin \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = y^{2} \] |
✓ |
✓ |
|
\[ {}\sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\sec \left (x \right ) \cos \left (y\right )^{2} = \cos \left (x \right ) \sin \left (y\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = x y \left (y^{\prime }-1\right ) \] |
✓ |
✓ |
|
\[ {}x y+\sqrt {x^{2}+1}\, y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y = x y+x^{2} y^{\prime } \] |
✓ |
✓ |
|
\[ {}\tan \left (x \right ) \sin \left (x \right )^{2}+\cos \left (x \right )^{2} \cot \left (y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}+y y^{\prime }+x^{2} y y^{\prime }-1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x} \] |
✓ |
✓ |
|
\[ {}2 y+x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{y} \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{y} \left (1+y^{\prime }\right ) = 1 \] |
✓ |
✓ |
|
\[ {}1+y^{2} = \frac {y^{\prime }}{x^{3} \left (-1+x \right )} \] |
✓ |
✓ |
|
\[ {}x^{2}+3 x y^{\prime } = y^{3}+2 y \] |
✗ |
✓ |
|
\[ {}\left (x^{2}+x +1\right ) y^{\prime } = y^{2}+2 y+5 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-2 x -8\right ) y^{\prime } = y^{2}+y-2 \] |
✓ |
✓ |
|
\[ {}x +y = x y^{\prime } \] |
✓ |
✓ |
|
\[ {}\left (x +y\right ) y^{\prime }+x = y \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = \sqrt {x y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = \sqrt {x^{2}-y^{2}} \] |
✓ |
✓ |
|
\[ {}x +y y^{\prime } = 2 y \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-y+\sqrt {-x^{2}+y^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}+y^{2} = x y y^{\prime } \] |
✓ |
✓ |
|
\[ {}\left (x y-x^{2}\right ) y^{\prime }-y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = 2 \sqrt {x y} \] |
✓ |
✓ |
|
\[ {}x +y+\left (x -y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \left (x^{2}-x y+y^{2}\right )+x y^{\prime } \left (x^{2}+x y+y^{2}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-y-x \sin \left (\frac {y}{x}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x}+\cosh \left (\frac {y}{x}\right ) \] |
✓ |
✓ |
|
\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \] |
✓ |
✓ |
|
\[ {}\left (\frac {x}{y}+\frac {y}{x}\right ) y^{\prime }+1 = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{\frac {y}{x}} x +y = x y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +y}{x -y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \] |
✓ |
✓ |
|
\[ {}\left (3 x y-2 x^{2}\right ) y^{\prime } = 2 y^{2}-x y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x -k \sqrt {x^{2}+y^{2}}} \] |
✓ |
✓ |
|
\[ {}y^{2} \left (y y^{\prime }-x \right )+x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x}+\tanh \left (\frac {y}{x}\right ) \] |
✓ |
✓ |
|
\[ {}x +y-\left (x -y+2\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +\left (x -2 y+2\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x -y+1+\left (x +y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x -y+2+\left (x +y-1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x -y+\left (-x +y+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +y-1}{x -y-1} \] |
✓ |
✓ |
|
\[ {}x +y+\left (2 x +2 y-1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x -y+1+\left (x -y-1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +2 y+\left (3 x +6 y+3\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +2 y+2 = \left (2 x +y-1\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}3 x -y+1+\left (x -3 y-5\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}6 x -3 y+6+\left (2 x -y+5\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x +3 y+2+\left (y-x \right ) y^{\prime } = 0 \] |
✓ |
✗ |
|
\[ {}x +y+4 = \left (2 x +2 y-1\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}2 x +3 y-1+\left (2 x +3 y+2\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x -y+2+\left (x +2 y+1\right ) y^{\prime } = 0 \] |
✓ |
✗ |
|
\[ {}3 x +2 y+3-\left (x +2 y-1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x -2 y+3+\left (1-x +2 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x +y+\left (4 x +2 y+1\right ) y^{\prime } = 0 \] |
✗ |
✓ |
|
\[ {}2 x +y+\left (4 x -2 y+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +y+\left (x -2 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x +y+\left (3 y+x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}a_{1} x +b_{1} y+c_{1} +\left (b_{1} x +b_{2} y+c_{2} \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x \left (6 x y+5\right )+\left (2 x^{3}+3 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 x^{2} y+x y^{2}+{\mathrm e}^{x}+\left (x^{3}+x^{2} y+\sin \left (y\right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x y-\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\cos \left (x \right ) y-2 \sin \left (y\right ) = \left (2 x \cos \left (y\right )-\sin \left (x \right )\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}\frac {2 x y-1}{y}+\frac {\left (3 y+x \right ) y^{\prime }}{y^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{x} y-2 x +{\mathrm e}^{x} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 y \sin \left (x \right )-\cos \left (y\right )+\left (x \sin \left (y\right )-3 \cos \left (x \right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{2}+2 y+\left (2 y^{3}-x^{2} y+2 x \right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}\frac {2}{y}-\frac {y}{x^{2}}+\left (\frac {1}{x}-\frac {2 x}{y^{2}}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {x y+1}{y}+\frac {\left (-x +2 y\right ) y^{\prime }}{y^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}\frac {y \left (2+x^{3} y\right )}{x^{3}} = \frac {\left (1-2 x^{3} y\right ) y^{\prime }}{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{2} \csc \left (x \right )^{2}+6 x y-2 = \left (2 \cot \left (x \right ) y-3 x^{2}\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}\frac {2 y}{x^{3}}+\frac {2 x}{y^{2}} = \left (\frac {1}{x^{2}}+\frac {2 x^{2}}{y^{3}}\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}\cos \left (y\right )-\left (x \sin \left (y\right )-y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 y \sin \left (x y\right )+\left (2 x \sin \left (x y\right )+y^{3}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {x \cos \left (\frac {x}{y}\right )}{y}+\sin \left (\frac {x}{y}\right )+\cos \left (x \right )-\frac {x^{2} \cos \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{x y} y+2 x y+\left ({\mathrm e}^{x y} x +x^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|