3.10.5 Problems 401 to 500

Table 3.635: System of differential equations

#

ODE

Mathematica

Maple

10200

[tx(t)+y(t)=0,ty(t)+x(t)=0]

10201

[tx(t)+2x(t)=t,ty(t)(2+t)x(t)ty(t)=t]

10202

[tx(t)+2x(t)2y(t)=t,ty(t)+x(t)+5y(t)=t2]

10203

[t2(1sin(t))x(t)=t(12sin(t))x(t)+t2y(t),t2(1sin(t))y(t)=(tcos(t)sin(t))x(t)+t(1tcos(t))y(t)]

10204

[x(t)+y(t)+y(t)=f(t),x(t)+y(t)+y(t)+x(t)+y(t)=g(t)]

10205

[2x(t)+y(t)3x(t)=0,x(t)+y(t)2y(t)=e2t]

10206

[x(t)y(t)+x(t)=2t,x(t)+y(t)9x(t)+3y(t)=sin(2t)]

10207

[x(t)x(t)+2y(t)=0,x(t)2y(t)=2tcos(2t)]

10208

[tx(t)ty(t)2y(t)=0,tx(t)+2x(t)+tx(t)=0]

10209

[x(t)+ay(t)=0,y(t)a2y(t)=0]

10210

[x(t)=ax(t)+by(t),y(t)=cx(t)+dy(t)]

10211

[x(t)=a1x(t)+b1y(t)+c1,y(t)=a2x(t)+b2y(t)+c2]

10212

[x(t)+x(t)+y(t)=5,y(t)4x(t)3y(t)=3]

10213

[x(t)=(3cos(at+b)21)c2x(t)+3c2y(t)sin(2atb)2,y(t)=(3sin(at+b)21)c2y(t)+3c2x(t)sin(2atb)2]

10214

[x(t)+6x(t)+7y(t)=0,y(t)+3x(t)+2y(t)=2t]

10215

[x(t)ay(t)+bx(t)=0,y(t)+ax(t)+by(t)=0]

10216

[a1x(t)+b1x(t)+c1x(t)Ay(t)=Beiωt,a2y(t)+b2y(t)+c2y(t)+Ax(t)=0]

10217

[x(t)+a(x(t)y(t))+b1x(t)=c1eiωt,y(t)+a(y(t)x(t))+b2y(t)=c2eiωt]

10218

[a11x(t)+b11x(t)+c11x(t)+a12y(t)+b12y(t)+c12y(t)=0,a21x(t)+b21x(t)+c21x(t)+a22y(t)+b22y(t)+c22y(t)=0]

10219

[x(t)2x(t)y(t)+y(t)=0,y(t)y(t)+2x(t)x(t)=t]

10220

[x(t)+y(t)+y(t)=sinh(2t),2x(t)+y(t)=2t]

10221

[x(t)x(t)+y(t)=0,x(t)+y(t)x(t)=0]

10222

[x(t)=2x(t),y(t)=3x(t)2y(t),z(t)=2y(t)+3z(t)]

10223

[x(t)=4x(t),y(t)=x(t)2y(t),z(t)=x(t)4y(t)+z(t)]

10224

[x(t)=y(t)z(t),y(t)=x(t)+y(t),z(t)=x(t)+z(t)]

10225

[x(t)y(t)+z(t)=0,y(t)x(t)y(t)=t,z(t)x(t)z(t)=t]

10226

[ax(t)=bc(y(t)z(t)),by(t)=ca(x(t)+z(t)),cz(t)=ab(x(t)y(t))]

10227

[x(t)=cy(t)bz(t),y(t)=az(t)cx(t),z(t)=bx(t)ay(t)]

10228

[x(t)=h(t)y(t)g(t)z(t),y(t)=f(t)z(t)h(t)x(t),z(t)=x(t)g(t)y(t)f(t)]

10229

[x(t)=x(t)+y(t)z(t),y(t)=y(t)+z(t)x(t),z(t)=x(t)y(t)+z(t)]

10230

[x(t)=3x(t)+48y(t)28z(t),y(t)=4x(t)+40y(t)22z(t),z(t)=6x(t)+57y(t)31z(t)]

10231

[x(t)=6x(t)72y(t)+44z(t),y(t)=4x(t)4y(t)+26z(t),z(t)=6x(t)63y(t)+38z(t)]

10232

[x(t)=ax(t)+gy(t)+βz(t),y(t)=gx(t)+by(t)+αz(t),z(t)=βx(t)+αy(t)+cz(t)]

10233

[tx(t)=2x(t)t,t3y(t)=x(t)+t2y(t)+t,t4z(t)=x(t)t2y(t)+t3z(t)+t]

10234

[atx(t)=bc(y(t)z(t)),bty(t)=ca(x(t)+z(t)),ctz(t)=ab(x(t)y(t))]

10235

[x1(t)=ax2(t)+bx3(t)cos(ct)+bx4(t)sin(ct),x2(t)=ax1(t)+bx3(t)sin(ct)bx4(t)cos(ct),x3(t)=bx1(t)cos(ct)bx2(t)sin(ct)+ax4(t),x4(t)=bx1(t)sin(ct)+bx2(t)cos(ct)ax3(t)]

10236

[x(t)=x(t)(x(t)+y(t)),y(t)=y(t)(x(t)+y(t))]

10237

[x(t)=(ay(t)+b)x(t),y(t)=(cx(t)+d)y(t)]

10238

[x(t)=x(t)(a(px(t)+qy(t))+α),y(t)=y(t)(β+b(px(t)+qy(t)))]

10239

[x(t)=h(ax(t))(cx(t)y(t)),y(t)=k(by(t))(cx(t)y(t))]

10240

[x(t)=y(t)2cos(x(t)),y(t)=y(t)sin(x(t))]

10241

[x(t)=x(t)y(t)2+x(t)+y(t),y(t)=x(t)2y(t)x(t)y(t)]

10242

[x(t)=x(t)+y(t)x(t)(x(t)2+y(t)2),y(t)=x(t)+y(t)y(t)(x(t)2+y(t)2)]

10243

[x(t)=y(t)+x(t)(x(t)2+y(t)21),y(t)=x(t)+y(t)(x(t)2+y(t)21)]

10244

[x(t)=y(t)(x(t)2+y(t)2),y(t)={x(t)2+y(t)22x(t)x(t)2+y(t)2(x(t)2y(t)22x(t))(x(t)2+y(t)2)otherwise]

10245

[x(t)=y(t)+({x(t)(x(t)2+y(t)21)sin(1x(t)2+y(t)2)x(t)2+y(t)210otherwise),y(t)=x(t)+({y(t)(x(t)2+y(t)21)sin(1x(t)2+y(t)2)x(t)2+y(t)210otherwise)]

10246

[(t2+1)x(t)=tx(t)+y(t),(t2+1)y(t)=x(t)ty(t)]

10247

[(x(t)2+y(t)2t2)x(t)=2tx(t),(x(t)2+y(t)2t2)y(t)=2ty(t)]

10248

[x(t)2+tx(t)+ay(t)x(t)=0,x(t)y(t)+ty(t)y(t)=0]

10249

[x(t)=tx(t)+f(x(t),y(t)),y(t)=ty(t)+g(x(t),y(t))]

10250

[x(t)=ae2x(t)ex(t)+e2x(t)cos(y(t))2,y(t)=e2x(t)sin(y(t))cos(y(t))sin(y(t))cos(y(t))3]

10251

[x(t)=kx(t)(x(t)2+y(t)2)32,y(t)=ky(t)(x(t)2+y(t)2)32]

10252

[x(t)=y(t)z(t),y(t)=x(t)2+y(t),z(t)=x(t)2+z(t)]

10253

[ax(t)=(bc)y(t)z(t),by(t)=(ca)z(t)x(t),cz(t)=(ab)x(t)y(t)]

10254

[x(t)=x(t)(y(t)z(t)),y(t)=y(t)(x(t)+z(t)),z(t)=z(t)(x(t)y(t))]

10255

[x(t)+y(t)=x(t)y(t),y(t)+z(t)=y(t)z(t),x(t)+z(t)=x(t)z(t)]

10256

[x(t)=x(t)22y(t)24,y(t)=2x(t)y(t)3z(t),z(t)=3x(t)z(t)y(t)26]

10257

[x(t)=x(t)(y(t)2z(t)2),y(t)=y(t)(z(t)2x(t)2),z(t)=z(t)(x(t)2y(t)2)]

10258

[x(t)=x(t)(y(t)2z(t)2),y(t)=y(t)(z(t)2+x(t)2),z(t)=z(t)(x(t)2+y(t)2)]

10259

[x(t)=x(t)y(t)2+x(t)+y(t),y(t)=x(t)2y(t)x(t)y(t),z(t)=y(t)2x(t)2]

10260

[(x(t)y(t))(x(t)z(t))x(t)=f(t),(x(t)+y(t))(y(t)z(t))y(t)=f(t),(x(t)+z(t))(y(t)+z(t))z(t)=f(t)]

10261

[x1(t)sin(x2(t))=x4(t)sin(x3(t))+x5(t)cos(x3(t)),x2(t)=x4(t)cos(x3(t))x5(t)sin(x3(t)),x3(t)+x1(t)cos(x2(t))=a,x4(t)(1λ)ax5(t)=msin(x2(t))cos(x3(t)),x5(t)+(1λ)ax4(t)=msin(x2(t))sin(x3(t))]

11348

[3x(t)+3x(t)+2y(t)=et,4x(t)3y(t)+3y(t)=3t]

11531

[x(t)=3y(t),y(t)=2x(t)]

11532

[x(t)=2y(t),y(t)=4x(t)]

11533

[x(t)=3x(t),y(t)=2y(t)]

11534

[x(t)=4y(t),y(t)=2y(t)]

11535

[x(t)=x(t),y(t)=x(t)+2y(t)]

11536

[x(t)=x(t)y(t),y(t)=x(t)+y(t)]

11537

[x(t)=x(t)+2y(t),y(t)=x(t)]

11538

[x(t)=x(t)2y(t),y(t)=2x(t)y(t)]

11539

[x(t)=2x(t)3y(t),y(t)=x(t)+4y(t)]

11540

[x(t)=3y(t),y(t)=2x(t)+y(t)]

11541

[x(t)=2x(t),y(t)=x(t)]

11542

[x(t)=2x(t)y(t),y(t)=4y(t)]

11543

[x(t)=x(t)2y(t),y(t)=2x(t)+4y(t)]

11544

[x(t)=6y(t),y(t)=6y(t)]

11545

[x(t)=2x(t)+3y(t),y(t)=x(t)14]

11546

[x(t)=3y(t)3x(t),y(t)=x(t)+2y(t)1]

11547

[x(t)=x(t)+y(t),y(t)=3y(t)]

11548

[x(t)=x(t),y(t)=3x(t)4y(t)]

11549

[x(t)=x(t)+y(t),y(t)=x(t)2y(t)]

11550

[x(t)=x(t)+y(t),y(t)=3y(t)3x(t)]

11551

[x(t)=x(t)2y(t),y(t)=3x(t)4y(t)]

11552

[x(t)=5x(t)y(t),y(t)=3x(t)+y(t)]

11553

[x(t)=3x(t)+y(t),y(t)=3y(t)]

11554

[x(t)=x(t)y(t),y(t)=x(t)+3y(t)]

11555

[x(t)=x(t)+2y(t),y(t)=3x(t)+2y(t)]

11556

[x(t)=3x(t)+4y(t),y(t)=3y(t)]

11557

[x(t)=2x(t)+2y(t),y(t)=6x(t)+3y(t)]

11558

[x(t)=5x(t)+3y(t),y(t)=2x(t)10y(t)]

11559

[x(t)=2x(t),y(t)=2y(t)]

11560

[x(t)=3x(t)2y(t),y(t)=4x(t)y(t)]

11561

[x(t)=5x(t)4y(t),y(t)=x(t)+y(t)]

11562

[x(t)=9y(t),y(t)=x(t)]

11563

[x(t)=2x(t)+y(t),y(t)=x(t)]

11564

[x(t)=x(t)2y(t),y(t)=2x(t)+4y(t)]

11565

[x(t)=3x(t)y(t)+1,y(t)=x(t)+y(t)+2]

11566

[x(t)=5x(t)+3y(t)+et,y(t)=2x(t)10y(t)]

11567

[x(t)=y(t),y(t)=x(t)+cos(tw)]