3.10.7 Problems 601 to 700

Table 3.639: System of differential equations

#

ODE

Mathematica

Maple

12562

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-2 y \left (t \right )] \]

12563

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right )] \]

12564

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )] \]

12565

\[ {}[x^{\prime }\left (t \right ) = -y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-4 y \left (t \right )] \]

12566

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )] \]

12567

\[ {}[x^{\prime }\left (t \right ) = 0, y^{\prime }\left (t \right ) = x \left (t \right )] \]

12573

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

12821

\[ {}[y_{1}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )-3 y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )-2 y_{2} \left (x \right )] \]

12822

\[ {}[y_{1}^{\prime }\left (x \right ) = y_{1} \left (x \right )-2 y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )+3 y_{2} \left (x \right )] \]

12823

\[ {}[y_{1}^{\prime }\left (x \right ) = y_{1} \left (x \right )+2 y_{2} \left (x \right )+x -1, y_{2}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )+2 y_{2} \left (x \right )-5 x -2] \]

12824

\[ {}\left [y_{1}^{\prime }\left (x \right ) = \frac {2 y_{1} \left (x \right )}{x}-\frac {y_{2} \left (x \right )}{x^{2}}-3+\frac {1}{x}-\frac {1}{x^{2}}, y_{2}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )+1-6 x\right ] \]

12825

\[ {}\left [y_{1}^{\prime }\left (x \right ) = \frac {5 y_{1} \left (x \right )}{x}+\frac {4 y_{2} \left (x \right )}{x}-2 x, y_{2}^{\prime }\left (x \right ) = -\frac {6 y_{1} \left (x \right )}{x}-\frac {5 y_{2} \left (x \right )}{x}+5 x\right ] \]

12826

\[ {}[y_{1}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )-2 y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = -y_{1} \left (x \right )+y_{2} \left (x \right )] \]

12827

\[ {}\left [y_{1}^{\prime }\left (x \right ) = \sin \left (x \right ) y_{1} \left (x \right )+\sqrt {x}\, y_{2} \left (x \right )+\ln \left (x \right ), y_{2}^{\prime }\left (x \right ) = \tan \left (x \right ) y_{1} \left (x \right )-{\mathrm e}^{x} y_{2} \left (x \right )+1\right ] \]

12828

\[ {}\left [y_{1}^{\prime }\left (x \right ) = \sin \left (x \right ) y_{1} \left (x \right )+\sqrt {x}\, y_{2} \left (x \right )+\ln \left (x \right ), y_{2}^{\prime }\left (x \right ) = \tan \left (x \right ) y_{1} \left (x \right )-{\mathrm e}^{x} y_{2} \left (x \right )+1\right ] \]

12829

\[ {}\left [y_{1}^{\prime }\left (x \right ) = {\mathrm e}^{-x} y_{1} \left (x \right )-\sqrt {1+x}\, y_{2} \left (x \right )+x^{2}, y_{2}^{\prime }\left (x \right ) = \frac {y_{1} \left (x \right )}{\left (-2+x \right )^{2}}\right ] \]

12830

\[ {}\left [y_{1}^{\prime }\left (x \right ) = {\mathrm e}^{-x} y_{1} \left (x \right )-\sqrt {1+x}\, y_{2} \left (x \right )+x^{2}, y_{2}^{\prime }\left (x \right ) = \frac {y_{1} \left (x \right )}{\left (-2+x \right )^{2}}\right ] \]

12839

\[ {}[y_{1}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )-3 y_{2} \left (x \right )+5 \,{\mathrm e}^{x}, y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )+4 y_{2} \left (x \right )-2 \,{\mathrm e}^{-x}] \]

12840

\[ {}[y_{1}^{\prime }\left (x \right ) = y_{2} \left (x \right )-2 y_{1} \left (x \right )+\sin \left (2 x \right ), y_{2}^{\prime }\left (x \right ) = -3 y_{1} \left (x \right )+y_{2} \left (x \right )-2 \cos \left (3 x \right )] \]

12841

\[ {}[y_{1}^{\prime }\left (x \right ) = 2 y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 2 y_{3} \left (x \right )-y_{1} \left (x \right )] \]

12842

\[ {}[y_{1}^{\prime }\left (x \right ) = 2 x y_{1} \left (x \right )-x^{2} y_{2} \left (x \right )+4 x, y_{2}^{\prime }\left (x \right ) = {\mathrm e}^{x} y_{1} \left (x \right )+3 \,{\mathrm e}^{-x} y_{2} \left (x \right )-\cos \left (3 x \right )] \]

12843

\[ {}[y_{1}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )-3 y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )-2 y_{2} \left (x \right )] \]

12844

\[ {}[y_{1}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )-3 y_{2} \left (x \right )+4 x -2, y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )-2 y_{2} \left (x \right )+3 x] \]

12845

\[ {}\left [y_{1}^{\prime }\left (x \right ) = \frac {5 y_{1} \left (x \right )}{x}+\frac {4 y_{2} \left (x \right )}{x}, y_{2}^{\prime }\left (x \right ) = -\frac {6 y_{1} \left (x \right )}{x}-\frac {5 y_{2} \left (x \right )}{x}\right ] \]

12846

\[ {}\left [y_{1}^{\prime }\left (x \right ) = \frac {5 y_{1} \left (x \right )}{x}+\frac {4 y_{2} \left (x \right )}{x}-2 x, y_{2}^{\prime }\left (x \right ) = -\frac {6 y_{1} \left (x \right )}{x}-\frac {5 y_{2} \left (x \right )}{x}+5 x\right ] \]

12847

\[ {}[y_{1}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )+y_{2} \left (x \right )-2 y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = 3 y_{2} \left (x \right )-2 y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )+y_{2} \left (x \right )-3 y_{3} \left (x \right )] \]

12848

\[ {}[y_{1}^{\prime }\left (x \right ) = 5 y_{1} \left (x \right )-5 y_{2} \left (x \right )-5 y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = -y_{1} \left (x \right )+4 y_{2} \left (x \right )+2 y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )-5 y_{2} \left (x \right )-3 y_{3} \left (x \right )] \]

12849

\[ {}[y_{1}^{\prime }\left (x \right ) = 4 y_{1} \left (x \right )+6 y_{2} \left (x \right )+6 y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )+3 y_{2} \left (x \right )+2 y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = -y_{1} \left (x \right )-4 y_{2} \left (x \right )-3 y_{3} \left (x \right )] \]

12850

\[ {}[y_{1}^{\prime }\left (x \right ) = y_{1} \left (x \right )+2 y_{2} \left (x \right )-3 y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = -3 y_{1} \left (x \right )+4 y_{2} \left (x \right )-2 y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )+y_{3} \left (x \right )] \]

12851

\[ {}[y_{1}^{\prime }\left (x \right ) = -2 y_{1} \left (x \right )-y_{2} \left (x \right )+y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = -y_{1} \left (x \right )-2 y_{2} \left (x \right )-y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = y_{1} \left (x \right )-y_{2} \left (x \right )-2 y_{3} \left (x \right )] \]

12852

\[ {}[y_{1}^{\prime }\left (x \right ) = y_{1} \left (x \right )+y_{2} \left (x \right )+2 y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )+y_{2} \left (x \right )+2 y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )+2 y_{2} \left (x \right )+4 y_{3} \left (x \right )] \]

12853

\[ {}[y_{1}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )+y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = -y_{1} \left (x \right )+2 y_{2} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 3 y_{3} \left (x \right )-4 y_{4} \left (x \right ), y_{4}^{\prime }\left (x \right ) = 4 y_{3} \left (x \right )+3 y_{4} \left (x \right )] \]

12854

\[ {}[y_{1}^{\prime }\left (x \right ) = y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = -3 y_{1} \left (x \right )+2 y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = y_{4} \left (x \right ), y_{4}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )-5 y_{3} \left (x \right )] \]

12855

\[ {}[y_{1}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )+2 y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = -2 y_{1} \left (x \right )+3 y_{2} \left (x \right ), y_{3}^{\prime }\left (x \right ) = y_{3} \left (x \right ), y_{4}^{\prime }\left (x \right ) = 2 y_{4} \left (x \right )] \]

12856

\[ {}[y_{1}^{\prime }\left (x \right ) = y_{2} \left (x \right )+y_{4} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )-y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = y_{4} \left (x \right ), y_{4}^{\prime }\left (x \right ) = y_{3} \left (x \right )] \]

12857

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right )] \]

12858

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right )] \]

12859

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right )] \]

12860

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )+y \left (t \right )] \]

12861

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right )] \]

12862

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )] \]

12863

\[ {}[x^{\prime }\left (t \right ) = -5 x \left (t \right )-y \left (t \right )+2, y^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right )-3] \]

12864

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )-6, y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )+2] \]

13061

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

13062

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 0] \]

13063

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )] \]

13064

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )] \]

13065

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

13066

\[ {}\left [x^{\prime }\left (t \right ) = 3 y \left (t \right ), y^{\prime }\left (t \right ) = 3 \pi y \left (t \right )-\frac {x \left (t \right )}{3}\right ] \]

13067

\[ {}\left [p^{\prime }\left (t \right ) = 3 p \left (t \right )-2 q \left (t \right )-7 r \left (t \right ), q^{\prime }\left (t \right ) = -2 p \left (t \right )+6 r \left (t \right ), r^{\prime }\left (t \right ) = \frac {73 q \left (t \right )}{100}+2 r \left (t \right )\right ] \]

13068

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )+2 \pi y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )] \]

13069

\[ {}[x^{\prime }\left (t \right ) = \beta y \left (t \right ), y^{\prime }\left (t \right ) = \gamma x \left (t \right )-y \left (t \right )] \]

13070

\[ {}[x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

13071

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )] \]

13072

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-5 y \left (t \right )] \]

13073

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )] \]

13074

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )] \]

13075

\[ {}[x^{\prime }\left (t \right ) = 1, y^{\prime }\left (t \right ) = x \left (t \right )] \]

13076

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right ), y^{\prime }\left (t \right ) = -2 y \left (t \right )] \]

13077

\[ {}[x^{\prime }\left (t \right ) = -4 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-3 y \left (t \right )] \]

13078

\[ {}[x^{\prime }\left (t \right ) = -5 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-4 y \left (t \right )] \]

13079

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+4 y \left (t \right )] \]

13080

\[ {}\left [x^{\prime }\left (t \right ) = -\frac {x \left (t \right )}{2}, y^{\prime }\left (t \right ) = x \left (t \right )-\frac {y \left (t \right )}{2}\right ] \]

13081

\[ {}[x^{\prime }\left (t \right ) = 5 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = 9 x \left (t \right )] \]

13082

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )] \]

13083

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )] \]

13084

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

13085

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-4 y \left (t \right )] \]

13086

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )] \]

13087

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )] \]

13088

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )] \]

13089

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

13090

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

13091

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

13092

\[ {}[x^{\prime }\left (t \right ) = -4 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right )] \]

13093

\[ {}[x^{\prime }\left (t \right ) = -4 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right )] \]

13094

\[ {}[x^{\prime }\left (t \right ) = -4 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right )] \]

13095

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

13096

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

13097

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

13098

\[ {}[x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )] \]

13099

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -4 x \left (t \right )+6 y \left (t \right )] \]

13100

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )] \]

13101

\[ {}[x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right )] \]

13102

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-6 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )] \]

13103

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -3 x \left (t \right )+2 y \left (t \right )] \]

13104

\[ {}[x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )] \]

13105

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -4 x \left (t \right )+6 y \left (t \right )] \]

13106

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )] \]

13107

\[ {}[x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right )] \]

13108

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-6 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )] \]

13109

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -3 x \left (t \right )+2 y \left (t \right )] \]

13110

\[ {}\left [x^{\prime }\left (t \right ) = -\frac {9 x \left (t \right )}{10}-2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+\frac {11 y \left (t \right )}{10}\right ] \]

13111

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )+10 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+3 y \left (t \right )] \]

13112

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right )] \]

13113

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right )] \]

13114

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-4 y \left (t \right )] \]

13115

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right )] \]

13116

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right )] \]

13117

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+4 y \left (t \right )] \]