3.24.32 Problems 3101 to 3200

Table 3.869: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

13670

x3y3x2y+7xy8y=0

13671

x4y+6x3y+15x2y+9xy+16y=0

13672

x4y+6x3y3x2y9xy+9y=0

13673

x4y+2x3y+x2yxy+y=0

13674

x4y+6x3y+7x2y+xyy=0

13683

x2y4xy+6y=10x+12

13689

x2y4xy+6y=1

13690

x2y4xy+6y=x

13691

x2y4xy+6y=22x+24

13692

x2y7xy+15y=x2

13693

x2y7xy+15y=x

13694

x2y7xy+15y=1

13695

x2y7xy+15y=4x2+2x+3

13769

x2y5xy+8y=5x3

13770

2x2yxy+y=50x3

13771

2x2y+5xy+y=85cos(2ln(x))

13772

x2y2y=15cos(3ln(x))10sin(3ln(x))

13773

3x2y7xy+3y=4x3

13774

2x2y+5xy+y=10x

13775

x2y5xy+9y=6x3

13776

x2y+5xy+4y=64x2ln(x)

13777

x2y2xy+2y=3x

13783

x2y+xyy=x

13784

x2y+xy9y=12x3

13785

x2y3xy+4y=x2

13786

x2y+5xy+4y=ln(x)

13787

x2y2y=12+x

13788

xyy4x3y=x3ex2

13789

xy+(2x+2)y+2y=8e2x

13790

(1+x)y+xyy=(1+x)2

13791

x2y2xy4y=10x

13794

x3y3x2y+6xy6y=x3

13795

x3y3x2y+6xy6y=ex2

13798

x4y+6x3y3x2y9xy+9y=12xsin(x2)

13801

x2y+xy9y=0

13804

x2y7xy+16y=0

13805

2xy+y=x

13809

x2y+7xy+9y=0

13810

x2y+5y2=0

13812

x2y6y=0

13814

y=y2

13815

x2y+xy+9y=0

13817

x2y+2xy30y=0

13820

4x2y+8xy+y=0

13822

2x2y3xy+2y=0

13823

9x2y+3xy+y=0

13827

xy=3y

13833

x2y+xy9y=3x

13836

x2y+2xy6y=18ln(x)

13838

2x2yxy2y=10x2

13840

xyy=3xy3

13841

x2y+3xy+2y=6

13842

x2y+xyy=1x2+1

13847

x2y+3xy+y=1(1+x)2

13848

x2y+3xy+y=1x

13862

ty+y+ty=0

14049

t2y+ty+2y=0

14050

xy2+2y=2x

14051

x+2sin(x)=sin(2t)

14064

x2y12xy+42y=0

14065

t2y+3ty+5y=0

14090

t2y12ty+42y=0

14091

x2y+3xy+5y=0

14110

x2yxy16y=0

14111

x2y+3xy+2y=0

14122

x2y+5xy+4y=0

14266

yyt+yt2=1t

14447

2t2y3ty3y=0

14451

3t2y5ty3y=0

14452

t2y+7ty7y=0

14457

t2y+tyy=0

14464

t2y+4ty4y=0

14465

t2y+6ty+6y=0

14466

t2y+ty+(t214)y=0

14467

t2y+3ty+y=0

14469

t2y+aty+by=0

14470

4t2y+4ty+(36t21)y=0

14471

ty+2y+16ty=0

14472

y+b(t)y+c(t)y=0

14473

y+b(t)y+c(t)y=0

14508

3t2y2ty+2y=0

14509

t2yty+y=0

14516

y25yy+4y2=0

14517

y22yy+y2=0

14622

t2y+3ty+y=ln(t)

14623

t2y+ty+4y=t

14624

t2y4ty6y=2ln(t)

14626

e2t(yyy2)2t(t+1)y=0

14628

t2y4ty+(t2+6)y=0

14629

t2y4ty+(t2+6)y=t3+2t

14630

ty+2y+ty=0

14631

ty+2y+ty=t

14632

4t2y+4ty+(16t21)y=0

14633

4t2y+4ty+(16t21)y=16t32

14634

4t2y+4ty+(16t21)y=16t32

14635

t2(ln(t)1)yty+y=3(1+ln(t))4t

14636

(sin(t)tcos(t))ytsin(t)y+sin(t)y=t

14675

2yy+y2=y2

14706

t2ln(t)yty+y=1

14707

(t2+t)y+(t2+2)y(2+t)y=2t