# |
ODE |
Mathematica |
Maple |
\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 x y^{\prime }-8 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+9 x y^{\prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 x y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime \prime \prime }+2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 10 x +12 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 1 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 22 x +24 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = x^{2} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = x \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 1 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 4 x^{2}+2 x +3 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = \frac {5}{x^{3}} \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = \frac {50}{x^{3}} \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 85 \cos \left (2 \ln \left (x \right )\right ) \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 y = 15 \cos \left (3 \ln \left (x \right )\right )-10 \sin \left (3 \ln \left (x \right )\right ) \] |
✓ |
✓ |
|
\[ {}3 x^{2} y^{\prime \prime }-7 x y^{\prime }+3 y = 4 x^{3} \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = \frac {10}{x} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 6 x^{3} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 64 x^{2} \ln \left (x \right ) \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 3 \sqrt {x} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \sqrt {x} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 12 x^{3} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{2} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = \ln \left (x \right ) \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 y = \frac {1}{-2+x} \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = x^{3} {\mathrm e}^{x^{2}} \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}\left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1+x \right )^{2} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y = \frac {10}{x} \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = x^{3} \] |
✓ |
✓ |
|
\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = {\mathrm e}^{-x^{2}} \] |
✓ |
✓ |
|
\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 x y^{\prime }+9 y = 12 x \sin \left (x^{2}\right ) \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime \prime }+y^{\prime } = \sqrt {x} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+\frac {5 y}{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-30 y = 0 \] |
✓ |
✓ |
|
\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime } = 3 y^{\prime } \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 3 \sqrt {x} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 18 \ln \left (x \right ) \] |
✓ |
✓ |
|
\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }-2 y = 10 x^{2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }-y^{\prime } = -3 x {y^{\prime }}^{3} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 6 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \frac {1}{x^{2}+1} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1+x \right )^{2}} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{x} \] |
✓ |
✓ |
|
\[ {}t y^{\prime \prime }+y^{\prime }+t y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x {y^{\prime \prime }}^{2}+2 y = 2 x \] |
✗ |
✗ |
|
\[ {}x^{\prime \prime }+2 \sin \left (x\right ) = \sin \left (2 t \right ) \] |
✗ |
✗ |
|
\[ {}x^{2} y^{\prime \prime }-12 x y^{\prime }+42 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }-12 t y^{\prime }+42 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-16 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\frac {y^{\prime }}{t}+\frac {y}{t^{2}} = \frac {1}{t} \] |
✓ |
✓ |
|
\[ {}2 t^{2} y^{\prime \prime }-3 t y^{\prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}3 t^{2} y^{\prime \prime }-5 t y^{\prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }-7 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+t y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+4 t y^{\prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+6 t y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+a t y^{\prime }+b y = 0 \] |
✓ |
✓ |
|
\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (36 t^{2}-1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}t y^{\prime \prime }+2 y^{\prime }+16 t y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \] |
✗ |
✗ |
|
\[ {}3 t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}{y^{\prime \prime }}^{2}-5 y^{\prime \prime } y^{\prime }+4 y^{2} = 0 \] |
✗ |
✓ |
|
\[ {}{y^{\prime \prime }}^{2}-2 y^{\prime \prime } y^{\prime }+y^{2} = 0 \] |
✗ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = \ln \left (t \right ) \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+4 y = t \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y = 2 \ln \left (t \right ) \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{-2 t} \left (y y^{\prime \prime }-{y^{\prime }}^{2}\right )-2 t \left (t +1\right ) y = 0 \] |
✗ |
✗ |
|
\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = t^{3}+2 t \] |
✓ |
✓ |
|
\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = 0 \] |
✓ |
✓ |
|
\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = -t \] |
✓ |
✓ |
|
\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 16 t^{\frac {3}{2}} \] |
✗ |
✗ |
|
\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 16 t^{\frac {3}{2}} \] |
✓ |
✓ |
|
\[ {}t^{2} \left (\ln \left (t \right )-1\right ) y^{\prime \prime }-t y^{\prime }+y = -\frac {3 \left (1+\ln \left (t \right )\right )}{4 \sqrt {t}} \] |
✓ |
✓ |
|
\[ {}\left (\sin \left (t \right )-t \cos \left (t \right )\right ) y^{\prime \prime }-t \sin \left (t \right ) y^{\prime }+\sin \left (t \right ) y = t \] |
✓ |
✓ |
|
\[ {}2 y y^{\prime \prime }+y^{2} = {y^{\prime }}^{2} \] |
✓ |
✓ |
|
\[ {}t^{2} \ln \left (t \right ) y^{\prime \prime \prime }-t y^{\prime \prime }+y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}\left (t^{2}+t \right ) y^{\prime \prime \prime }+\left (-t^{2}+2\right ) y^{\prime \prime }-\left (2+t \right ) y^{\prime } = -2-t \] |
✓ |
✓ |
|