3.24.32 Problems 3101 to 3200

Table 3.869: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

13670

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 x y^{\prime }-8 y = 0 \]

13671

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+9 x y^{\prime }+16 y = 0 \]

13672

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 x y^{\prime }+9 y = 0 \]

13673

\[ {}x^{4} y^{\prime \prime \prime \prime }+2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

13674

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

13683

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 10 x +12 \]

13689

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 1 \]

13690

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x \]

13691

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 22 x +24 \]

13692

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = x^{2} \]

13693

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = x \]

13694

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 1 \]

13695

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 4 x^{2}+2 x +3 \]

13769

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = \frac {5}{x^{3}} \]

13770

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = \frac {50}{x^{3}} \]

13771

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 85 \cos \left (2 \ln \left (x \right )\right ) \]

13772

\[ {}x^{2} y^{\prime \prime }-2 y = 15 \cos \left (3 \ln \left (x \right )\right )-10 \sin \left (3 \ln \left (x \right )\right ) \]

13773

\[ {}3 x^{2} y^{\prime \prime }-7 x y^{\prime }+3 y = 4 x^{3} \]

13774

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = \frac {10}{x} \]

13775

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 6 x^{3} \]

13776

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 64 x^{2} \ln \left (x \right ) \]

13777

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 3 \sqrt {x} \]

13783

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \sqrt {x} \]

13784

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 12 x^{3} \]

13785

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{2} \]

13786

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = \ln \left (x \right ) \]

13787

\[ {}x^{2} y^{\prime \prime }-2 y = \frac {1}{-2+x} \]

13788

\[ {}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = x^{3} {\mathrm e}^{x^{2}} \]

13789

\[ {}x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]

13790

\[ {}\left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1+x \right )^{2} \]

13791

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y = \frac {10}{x} \]

13794

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = x^{3} \]

13795

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = {\mathrm e}^{-x^{2}} \]

13798

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 x y^{\prime }+9 y = 12 x \sin \left (x^{2}\right ) \]

13801

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

13804

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+16 y = 0 \]

13805

\[ {}2 x y^{\prime \prime }+y^{\prime } = \sqrt {x} \]

13809

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]

13810

\[ {}x^{2} y^{\prime \prime }+\frac {5 y}{2} = 0 \]

13812

\[ {}x^{2} y^{\prime \prime }-6 y = 0 \]

13814

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

13815

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0 \]

13817

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-30 y = 0 \]

13820

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+y = 0 \]

13822

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \]

13823

\[ {}9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

13827

\[ {}x y^{\prime \prime } = 3 y^{\prime } \]

13833

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 3 \sqrt {x} \]

13836

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 18 \ln \left (x \right ) \]

13838

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }-2 y = 10 x^{2} \]

13840

\[ {}x y^{\prime \prime }-y^{\prime } = -3 x {y^{\prime }}^{3} \]

13841

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 6 \]

13842

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \frac {1}{x^{2}+1} \]

13847

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1+x \right )^{2}} \]

13848

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{x} \]

13862

\[ {}t y^{\prime \prime }+y^{\prime }+t y = 0 \]

14049

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+2 y = 0 \]

14050

\[ {}x {y^{\prime \prime }}^{2}+2 y = 2 x \]

14051

\[ {}x^{\prime \prime }+2 \sin \left (x\right ) = \sin \left (2 t \right ) \]

14064

\[ {}x^{2} y^{\prime \prime }-12 x y^{\prime }+42 y = 0 \]

14065

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+5 y = 0 \]

14090

\[ {}t^{2} y^{\prime \prime }-12 t y^{\prime }+42 y = 0 \]

14091

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+5 y = 0 \]

14110

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-16 y = 0 \]

14111

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 0 \]

14122

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

14266

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{t}+\frac {y}{t^{2}} = \frac {1}{t} \]

14447

\[ {}2 t^{2} y^{\prime \prime }-3 t y^{\prime }-3 y = 0 \]

14451

\[ {}3 t^{2} y^{\prime \prime }-5 t y^{\prime }-3 y = 0 \]

14452

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }-7 y = 0 \]

14457

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }-y = 0 \]

14464

\[ {}t^{2} y^{\prime \prime }+4 t y^{\prime }-4 y = 0 \]

14465

\[ {}t^{2} y^{\prime \prime }+6 t y^{\prime }+6 y = 0 \]

14466

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

14467

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

14469

\[ {}t^{2} y^{\prime \prime }+a t y^{\prime }+b y = 0 \]

14470

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (36 t^{2}-1\right ) y = 0 \]

14471

\[ {}t y^{\prime \prime }+2 y^{\prime }+16 t y = 0 \]

14472

\[ {}y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \]

14473

\[ {}y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \]

14508

\[ {}3 t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

14509

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

14516

\[ {}{y^{\prime \prime }}^{2}-5 y^{\prime \prime } y^{\prime }+4 y^{2} = 0 \]

14517

\[ {}{y^{\prime \prime }}^{2}-2 y^{\prime \prime } y^{\prime }+y^{2} = 0 \]

14622

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = \ln \left (t \right ) \]

14623

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+4 y = t \]

14624

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y = 2 \ln \left (t \right ) \]

14626

\[ {}{\mathrm e}^{-2 t} \left (y y^{\prime \prime }-{y^{\prime }}^{2}\right )-2 t \left (t +1\right ) y = 0 \]

14628

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = 0 \]

14629

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = t^{3}+2 t \]

14630

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]

14631

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = -t \]

14632

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 0 \]

14633

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 16 t^{\frac {3}{2}} \]

14634

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 16 t^{\frac {3}{2}} \]

14635

\[ {}t^{2} \left (\ln \left (t \right )-1\right ) y^{\prime \prime }-t y^{\prime }+y = -\frac {3 \left (1+\ln \left (t \right )\right )}{4 \sqrt {t}} \]

14636

\[ {}\left (\sin \left (t \right )-t \cos \left (t \right )\right ) y^{\prime \prime }-t \sin \left (t \right ) y^{\prime }+\sin \left (t \right ) y = t \]

14675

\[ {}2 y y^{\prime \prime }+y^{2} = {y^{\prime }}^{2} \]

14706

\[ {}t^{2} \ln \left (t \right ) y^{\prime \prime \prime }-t y^{\prime \prime }+y^{\prime } = 1 \]

14707

\[ {}\left (t^{2}+t \right ) y^{\prime \prime \prime }+\left (-t^{2}+2\right ) y^{\prime \prime }-\left (2+t \right ) y^{\prime } = -2-t \]