3.27.1 Problems 1 to 100

Table 3.931: Second order, Linear, non-homogeneous and constant coefficients




#

ODE

Mathematica

Maple





188

y+y=3x





189

y4y=12





190

y2y3y=6





191

y2y+2y=2x





192

y+2y=4





193

y+2y=6x





194

y+2y=6x+4





219

y+16y=e3x





220

yy2y=3x+4





221

yy6y=2sin(3x)





222

4y+4y+y=3xex





223

y+y+y=sin(x)2





224

2y+4y+7y=x2





225

y4y=sinh(x)





226

y4y=cosh(2x)





227

y+2y3y=1+xex





228

y+9y=2cos(3x)+3sin(3x)





229

y+9y=2x2e3x+5





230

y2y+2y=exsin(x)





231

y+4y=3xcos(2x)





232

y+3y+2y=x(exe2x)





233

y6y+13y=xe3xsin(2x)





234

y+4y=2x





235

y+3y+2y=ex





236

y+9y=sin(2x)





237

y+y=cos(x)





238

y2y+2y=1+x





239

y+y+y=sin(3x)sin(x)





240

y+9y=sin(x)4





241

y+y=xcos(x)3





242

y+3y+2y=4ex





243

y2y8y=3e2x





244

y4y+4y=2e2x





245

y4y=sinh(2x)





246

y+4y=cos(3x)





247

y+9y=sin(3x)





248

y+9y=2sec(3x)





249

y+y=csc(x)2





250

y+4y=sin(x)2





251

y4y=xex





258

x+9x=10cos(2t)





259

x+4x=5sin(3t)





260

x+100x=225cos(5t)+300sin(5t)





261

x+25x=90cos(4t)





262

mx+kx=F0cos(ωt)





263

x+4x+4x=10cos(3t)





264

x+3x+5x=4cos(5t)





265

2x+2x+x=3sin(10t)





266

x+3x+3x=8cos(10t)+6sin(10t)





267

x+4x+5x=10cos(3t)





268

x+6x+13x=10sin(5t)





269

x+6x+13x=10sin(5t)





270

x+2x+26x=600cos(10t)





271

x+8x+25x=200cos(t)+520sin(t)





683

y5y+6y=2et





684

yy2y=2et





685

y+2y+y=3et





686

4y4y+y=16et2





687

y+y=tan(t)





688

y+9y=9sec(3t)2





689

y+4y+4y=e2tt2





690

y+4y=3csc(2t)





691

y+y=2sec(t2)





692

y2y+y=ett2+1





693

y5y+6y=g(t)





694

y+4y=g(t)





707

u+u8+4u=3cos(t4)





708

u+u8+4u=3cos(2t)





709

u+u8+4u=3cos(6t)





840

y+ω2y=cos(2t)





841

y2y+2y=et





842

y+4y={10t<π0πt<





843

y+4y={10t<101t<





844

y+y={t0t<12t1t<202t<





845

y+y={10t<3π03πt<





846

y+2y+2y={1πt<2π0otherwise





847

y+4y=sin(t)Heaviside(t2π)sin(t)





848

y+3y+2y={10t<100otherwise





849

y+y+5y4=tHeaviside(tπ2)(tπ2)





850

y+y+5y4={sin(t)0t<π0otherwise





851

y+4y=Heaviside(tπ)Heaviside(t3π)





853

u+u4+u=k(Heaviside(t32)Heaviside(t52))





854

u+u4+u=Heaviside(t32)2Heaviside(t52)2





855

u+u4+u=Heaviside(t5)(t5)Heaviside(t5k)(t5k)k





856

y+2y+2y=δ(tπ)





857

y+4y=δ(tπ)δ(t2π)





858

y+3y+2y=δ(t5)+Heaviside(t10)





859

y+2y+3y=sin(t)+δ(t3π)





860

y+y=δ(t2π)cos(t)





861

y+4y=2δ(tπ4)





862

y+2y+2y=cos(t)+δ(tπ2)





864

y+y2+y=δ(1+t)





865

y+y4+y=δ(1+t)





866

y+y=Heaviside(t4+k)Heaviside(t4k)2k





867

y+2y+2y=f(t)





868

y+2y+2y=δ(tπ)





1110

y3y+2y=11+ex





1111

y2y+y=7x32ex





1113

y2y+2y=exsec(x)





1155

y+9y=tan(3x)