3.27.2 Problems 101 to 200

Table 3.933: Second order, Linear, non-homogeneous and constant coefficients

#

ODE

Mathematica

Maple

1156

\[ {}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \sec \left (2 x \right )^{2} \]

1157

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {4}{1+{\mathrm e}^{-x}} \]

1158

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 3 \,{\mathrm e}^{x} \sec \left (x \right ) \]

1159

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 14 x^{\frac {3}{2}} {\mathrm e}^{x} \]

1160

\[ {}y^{\prime \prime }-y = \frac {4 \,{\mathrm e}^{-x}}{1-{\mathrm e}^{-2 x}} \]

1754

\[ {}y^{\prime \prime }+y = \sec \left (t \right ) \]

1755

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t \,{\mathrm e}^{2 t} \]

1756

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = \left (t^{2}+1\right ) {\mathrm e}^{t} \]

1757

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = t \,{\mathrm e}^{3 t}+1 \]

1758

\[ {}3 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (t \right ) {\mathrm e}^{-t} \]

1759

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = t^{\frac {5}{2}} {\mathrm e}^{-2 t} \]

1760

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sqrt {t +1} \]

1761

\[ {}y^{\prime \prime }-y = f \left (t \right ) \]

1764

\[ {}m y^{\prime \prime }+c y^{\prime }+k y = F_{0} \cos \left (\omega t \right ) \]

2140

\[ {}y^{\prime \prime }-4 y = 3 \cos \left (x \right ) \]

2141

\[ {}y^{\prime \prime }+y = \sin \left (2 x \right ) \]

2142

\[ {}y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{x} \]

2143

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-2 x} \]

2144

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

2145

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2} \]

2146

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]

2148

\[ {}y^{\prime \prime }-4 y = x +{\mathrm e}^{2 x} \]

2149

\[ {}y^{\prime \prime }-9 y = {\mathrm e}^{3 x}+\sin \left (3 x \right ) \]

2150

\[ {}y^{\prime \prime }-y^{\prime }-6 y = x^{3} \]

2151

\[ {}-2 y^{\prime \prime }+3 y = x \,{\mathrm e}^{x} \]

2152

\[ {}y^{\prime \prime }+4 y = x \sin \left (x \right ) \]

2154

\[ {}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{x} \sin \left (3 x \right ) \]

2157

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = x^{3} {\mathrm e}^{2 x} \]

2160

\[ {}y^{\prime \prime }+2 n y^{\prime }+n^{2} y = 5 \cos \left (6 x \right ) \]

2161

\[ {}y^{\prime \prime }+9 y = \left (1+\sin \left (3 x \right )\right ) \cos \left (2 x \right ) \]

2162

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 2 x -{\mathrm e}^{-4 x}+\sin \left (2 x \right ) \]

2164

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (x \right )^{2} \]

2166

\[ {}y^{\prime \prime }-5 y^{\prime }-6 y = {\mathrm e}^{3 x} \]

2167

\[ {}y^{\prime \prime }+4 y = 12 \cos \left (x \right )^{2} \]

2168

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]

2169

\[ {}y^{\prime \prime }+y = {\mathrm e}^{x} \sin \left (x \right ) \]

2170

\[ {}2 y^{\prime \prime }+y^{\prime } = 8 \sin \left (2 x \right )+{\mathrm e}^{-x} \]

2171

\[ {}y^{\prime \prime }+y = 3 x \sin \left (x \right ) \]

2172

\[ {}2 y^{\prime \prime }+5 y^{\prime }-3 y = \sin \left (x \right )-8 x \]

2173

\[ {}8 y^{\prime \prime }-y = x \,{\mathrm e}^{-\frac {x}{2}} \]

2174

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

2175

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{x} \]

2176

\[ {}y^{\prime \prime }+4 y = x^{2} \]

2177

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{2 x} \]

2178

\[ {}y^{\prime \prime }+y = 4 \sin \left (2 x \right ) \]

2179

\[ {}y^{\prime \prime }+4 y = 2 x -2 \sin \left (2 x \right ) \]

2180

\[ {}y^{\prime \prime }-y = 3 x +5 \,{\mathrm e}^{x} \]

2181

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{x}+\sin \left (4 x \right ) \]

2184

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

2185

\[ {}y^{\prime \prime }+a^{2} y = \sec \left (a x \right ) \]

2189

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}} \]

2190

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{-x}\right ) \]

2191

\[ {}y^{\prime \prime }+4 y = \sec \left (x \right ) \tan \left (x \right ) \]

2192

\[ {}y^{\prime \prime }-2 y = \sin \left (2 x \right ) {\mathrm e}^{-x} \]

2193

\[ {}y^{\prime \prime }+9 y = \sec \left (x \right ) \csc \left (x \right ) \]

2194

\[ {}y^{\prime \prime }+9 y = \csc \left (2 x \right ) \]

2195

\[ {}y^{\prime \prime }+y = \tan \left (\frac {x}{3}\right )^{2} \]

2197

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{\frac {x}{2}} \ln \left (x \right ) \]

2199

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 x} \]

2201

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} \]

2202

\[ {}y^{\prime \prime }+4 y = 2 \,{\mathrm e}^{x} \]

2203

\[ {}y^{\prime \prime }+3 y = 3 \,{\mathrm e}^{-4 x} \]

2204

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{-x}}{2} \]

2205

\[ {}y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{-2 x} \]

2206

\[ {}y^{\prime \prime }+2 y = \sin \left (x \right ) \]

2207

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{3 x}}{2}-\frac {{\mathrm e}^{-3 x}}{2} \]

2208

\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = \sin \left (2 x \right ) \]

2209

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

2213

\[ {}y^{\prime \prime }+y = {\mathrm e}^{3 x} \left (1+\sin \left (2 x \right )\right ) \]

2214

\[ {}y^{\prime \prime }+2 n^{2} y^{\prime }+n^{4} y = \sin \left (k x \right ) \]

2215

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \frac {{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{-x}}{2} \]

2216

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{-x} \]

2217

\[ {}y^{\prime \prime }+4 y = x \,{\mathrm e}^{x} \]

2218

\[ {}y^{\prime \prime }+2 y = x^{2} {\mathrm e}^{-x} \]

2219

\[ {}y^{\prime \prime }-y^{\prime }-2 y = x^{2}-8 \]

2234

\[ {}y^{\prime \prime }+4 y = x \sin \left (x \right ) \]

2235

\[ {}y^{\prime \prime }+y = \cos \left (x \right ) x^{2} \]

2236

\[ {}y^{\prime \prime }-y = \cos \left (x \right ) x^{2} \]

2239

\[ {}2 y^{\prime \prime }+3 y^{\prime }-2 y = {\mathrm e}^{x} x^{2} \]

2243

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (x \right ) x^{2} \]

2244

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{2} \sin \left (x \right ) \]

2245

\[ {}y^{\prime \prime }-y = \sin \left (2 x \right ) x \]

2246

\[ {}y^{\prime \prime }+2 y^{\prime } = x^{3} \sin \left (2 x \right ) \]

2247

\[ {}y^{\prime \prime }-y^{\prime } = \sin \left (x \right ) {\mathrm e}^{2 x} x \]

2248

\[ {}y^{\prime \prime }-4 y = \cos \left (x \right ) {\mathrm e}^{2 x} x \]

2249

\[ {}y^{\prime \prime }+2 y^{\prime } = x^{2} {\mathrm e}^{-x} \sin \left (x \right ) \]

2273

\[ {}y^{\prime \prime } = \cos \left (t \right ) \]

2301

\[ {}y^{\prime \prime } = \sec \left (x \right ) \tan \left (x \right ) \]

2513

\[ {}x^{\prime \prime }+\omega _{0}^{2} x = a \cos \left (\omega t \right ) \]

2515

\[ {}f^{\prime \prime }+2 f^{\prime }+5 f = {\mathrm e}^{-t} \cos \left (3 t \right ) \]

2516

\[ {}f^{\prime \prime }+6 f^{\prime }+9 f = {\mathrm e}^{-t} \]

2517

\[ {}f^{\prime \prime }+8 f^{\prime }+12 f = 12 \,{\mathrm e}^{-4 t} \]

2518

\[ {}f^{\prime \prime }+8 f^{\prime }+12 f = 12 \,{\mathrm e}^{-4 t} \]

2519

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 4 \,{\mathrm e}^{-x} \]

2525

\[ {}y^{\prime \prime }-y = x^{n} \]

2526

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \,{\mathrm e}^{x} \]

2613

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

2614

\[ {}y^{\prime \prime } = x^{n} \]

2616

\[ {}y^{\prime \prime } = \cos \left (x \right ) \]

2618

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]