6.73 Problems 7201 to 7300

Table 6.145: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

7201

\[ {} x^{3} y^{\prime \prime }+y = x^{{3}/{2}} \]

7202

\[ {} 2 x^{2} y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x} = \sqrt {x} \]

7203

\[ {} \left (-x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }+2 y = 3 x^{2} \]

7204

\[ {} \left (1-x \right ) x y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }-\frac {y}{4} = 0 \]

7205

\[ {} 2 \left (1-x \right ) x y^{\prime \prime }+x y^{\prime }-y = 0 \]

7206

\[ {} 2 \left (1-x \right ) x y^{\prime \prime }+\left (1-11 x \right ) y^{\prime }-10 y = 0 \]

7207

\[ {} \left (1-x \right ) x y^{\prime \prime }+\frac {\left (1-2 x \right ) y^{\prime }}{3}+\frac {20 y}{9} = 0 \]

7208

\[ {} 2 \left (1-x \right ) x y^{\prime \prime }+y^{\prime }+4 y = 0 \]

7209

\[ {} 4 y^{\prime \prime }+\frac {3 \left (-x^{2}+2\right ) y}{\left (-x^{2}+1\right )^{2}} = 0 \]

7210

\[ {} y^{\prime }+y^{2} = \frac {a^{2}}{x^{4}} \]

7211

\[ {} u^{\prime \prime }-\frac {a^{2} u}{x^{{2}/{3}}} = 0 \]

7212

\[ {} u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

7213

\[ {} u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

7214

\[ {} u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0 \]

7215

\[ {} u^{\prime \prime }+\frac {4 u^{\prime }}{x}-a^{2} u = 0 \]

7216

\[ {} u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u = 0 \]

7217

\[ {} -a^{2} y+y^{\prime \prime } = \frac {6 y}{x^{2}} \]

7218

\[ {} y^{\prime \prime }+n^{2} y = \frac {6 y}{x^{2}} \]

7219

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-\left (x^{2}+\frac {1}{4}\right ) y = 0 \]

7220

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}} = 0 \]

7221

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {25}{4}\right ) y = 0 \]

7222

\[ {} y^{\prime \prime }+q y^{\prime } = \frac {2 y}{x^{2}} \]

7223

\[ {} y^{\prime \prime }+y \,{\mathrm e}^{2 x} = n^{2} y \]

7224

\[ {} y^{\prime \prime }+\frac {y}{4 x} = 0 \]

7225

\[ {} x y^{\prime \prime }+y^{\prime }+y = 0 \]

7226

\[ {} x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

7227

\[ {} y^{\prime } = y \]

7228

\[ {} x y^{\prime } = y \]

7229

\[ {} x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0 \]

7230

\[ {} y^{\prime } \sin \left (x \right ) = y \ln \left (y\right ) \]

7231

\[ {} y y^{\prime } x +1+y^{2} = 0 \]

7232

\[ {} y y^{\prime } x -x y = y \]

7233

\[ {} y^{\prime } = \frac {2 x y^{2}+x}{x^{2} y-y} \]

7234

\[ {} y y^{\prime }+x y^{2}-8 x = 0 \]

7235

\[ {} y^{\prime }+2 x y^{2} = 0 \]

7236

\[ {} \left (1+y\right ) y^{\prime } = y \]

7237

\[ {} y^{\prime }-x y = x \]

7238

\[ {} 2 y^{\prime } = 3 \left (y-2\right )^{{1}/{3}} \]

7239

\[ {} \left (x +x y\right ) y^{\prime }+y = 0 \]

7240

\[ {} y^{\prime }+y = {\mathrm e}^{x} \]

7241

\[ {} x^{2} y^{\prime }+3 x y = 1 \]

7242

\[ {} y^{\prime }+2 x y-x \,{\mathrm e}^{-x^{2}} = 0 \]

7243

\[ {} 2 x y^{\prime }+y = 2 x^{{5}/{2}} \]

7244

\[ {} \cos \left (x \right ) y^{\prime }+y = \cos \left (x \right )^{2} \]

7245

\[ {} y^{\prime }+\frac {y}{\sqrt {x^{2}+1}} = \frac {1}{x +\sqrt {x^{2}+1}} \]

7246

\[ {} \left ({\mathrm e}^{x}+1\right ) y^{\prime }+2 y \,{\mathrm e}^{x} = \left ({\mathrm e}^{x}+1\right ) {\mathrm e}^{x} \]

7247

\[ {} x \ln \left (x \right ) y^{\prime }+y = \ln \left (x \right ) \]

7248

\[ {} y^{\prime } \left (-x^{2}+1\right ) = x y+2 x \sqrt {-x^{2}+1} \]

7249

\[ {} y^{\prime }+y \tanh \left (x \right ) = 2 \,{\mathrm e}^{x} \]

7250

\[ {} y^{\prime }+y \cos \left (x \right ) = \sin \left (2 x \right ) \]

7251

\[ {} x^{\prime } = \cos \left (y \right )-x \tan \left (y \right ) \]

7252

\[ {} x^{\prime }+x-{\mathrm e}^{y} = 0 \]

7253

\[ {} x^{\prime } = \frac {3 y^{{2}/{3}}-x}{3 y} \]

7254

\[ {} y^{\prime }+y = x y^{{2}/{3}} \]

7255

\[ {} y^{\prime }+\frac {y}{x} = 2 x^{{3}/{2}} \sqrt {y} \]

7256

\[ {} 3 x y^{2} y^{\prime }+3 y^{3} = 1 \]

7257

\[ {} 2 x \,{\mathrm e}^{3 y}+{\mathrm e}^{x}+\left (3 x^{2} {\mathrm e}^{3 y}-y^{2}\right ) y^{\prime } = 0 \]

7258

\[ {} \left (x -y\right ) y^{\prime }+x +y+1 = 0 \]

7259

\[ {} \cos \left (x \right ) \cos \left (y\right )+\sin \left (x \right )^{2}-\left (\sin \left (x \right ) \sin \left (y\right )+\cos \left (y\right )^{2}\right ) y^{\prime } = 0 \]

7260

\[ {} x^{2} y^{\prime }+y^{2}-x y = 0 \]

7261

\[ {} y y^{\prime } = \sqrt {x^{2}+y^{2}}-x \]

7262

\[ {} x y+\left (-x^{2}+y^{2}\right ) y^{\prime } = 0 \]

7263

\[ {} y^{2}-x y+\left (x^{2}+x y\right ) y^{\prime } = 0 \]

7264

\[ {} y^{\prime } = \cos \left (x +y\right ) \]

7265

\[ {} y^{\prime } = \frac {y}{x}-\tan \left (\frac {y}{x}\right ) \]

7266

\[ {} \left (x -1\right ) y^{\prime }+y-\frac {1}{x^{2}}+\frac {2}{x^{3}} = 0 \]

7267

\[ {} y^{\prime } = x y^{2}-\frac {2 y}{x}-\frac {1}{x^{3}} \]

7268

\[ {} y^{\prime } = \frac {2 y^{2}}{x}+\frac {y}{x}-2 x \]

7269

\[ {} y^{\prime } = y^{2} {\mathrm e}^{-x}+y-{\mathrm e}^{x} \]

7270

\[ {} y^{\prime \prime }+y^{\prime }-2 y = 0 \]

7271

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = 0 \]

7272

\[ {} y^{\prime \prime }+9 y^{\prime } = 0 \]

7273

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

7274

\[ {} y^{\prime \prime }-2 y^{\prime }+6 y = 0 \]

7275

\[ {} y^{\prime \prime }+16 y = 0 \]

7276

\[ {} 6 y-5 y^{\prime }+y^{\prime \prime } = 0 \]

7277

\[ {} y^{\prime \prime }+5 y^{\prime } = 0 \]

7278

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

7279

\[ {} 2 y^{\prime \prime }+y^{\prime }-y = 0 \]

7280

\[ {} y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0 \]

7281

\[ {} y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0 \]

7282

\[ {} y^{\prime \prime \prime }+y = 0 \]

7283

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }-6 y^{\prime } = 0 \]

7284

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }-5 y = 0 \]

7285

\[ {} y^{\prime \prime \prime \prime }+4 y = 0 \]

7286

\[ {} y^{\prime \prime }-4 y^{\prime } = 10 \]

7287

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = 16 \]

7288

\[ {} y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{2 x} \]

7289

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 24 \,{\mathrm e}^{-3 x} \]

7290

\[ {} y^{\prime \prime }+y = 2 \,{\mathrm e}^{x} \]

7291

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 12 \,{\mathrm e}^{-x} \]

7292

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 3 \,{\mathrm e}^{2 x} \]

7293

\[ {} y^{\prime \prime }-16 y = 40 \,{\mathrm e}^{4 x} \]

7294

\[ {} y+2 y^{\prime }+y^{\prime \prime } = 2 \,{\mathrm e}^{-x} \]

7295

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 6 \,{\mathrm e}^{3 x} \]

7296

\[ {} y^{\prime \prime }+2 y^{\prime }+10 y = 100 \cos \left (4 x \right ) \]

7297

\[ {} y^{\prime \prime }+4 y^{\prime }+12 y = 80 \sin \left (2 x \right ) \]

7298

\[ {} y-2 y^{\prime }+y^{\prime \prime } = 2 \cos \left (x \right ) \]

7299

\[ {} y^{\prime \prime }+8 y^{\prime }+25 y = 120 \sin \left (5 x \right ) \]

7300

\[ {} 5 y^{\prime \prime }+12 y^{\prime }+20 y = 120 \sin \left (2 x \right ) \]