| # | ODE | Mathematica | Maple | Sympy |
| \[
{} x^{3} y^{\prime \prime }+y = x^{{3}/{2}}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} 2 x^{2} y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x} = \sqrt {x}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} \left (-x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }+2 y = 3 x^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1-x \right ) x y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }-\frac {y}{4} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 \left (1-x \right ) x y^{\prime \prime }+x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 \left (1-x \right ) x y^{\prime \prime }+\left (1-11 x \right ) y^{\prime }-10 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1-x \right ) x y^{\prime \prime }+\frac {\left (1-2 x \right ) y^{\prime }}{3}+\frac {20 y}{9} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 \left (1-x \right ) x y^{\prime \prime }+y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime }+\frac {3 \left (-x^{2}+2\right ) y}{\left (-x^{2}+1\right )^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y^{2} = \frac {a^{2}}{x^{4}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} u^{\prime \prime }-\frac {a^{2} u}{x^{{2}/{3}}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} u^{\prime \prime }+\frac {4 u^{\prime }}{x}-a^{2} u = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -a^{2} y+y^{\prime \prime } = \frac {6 y}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+n^{2} y = \frac {6 y}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }-\left (x^{2}+\frac {1}{4}\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {25}{4}\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+q y^{\prime } = \frac {2 y}{x^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y \,{\mathrm e}^{2 x} = n^{2} y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\frac {y}{4 x} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } \sin \left (x \right ) = y \ln \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } x +1+y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } x -x y = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 x y^{2}+x}{x^{2} y-y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime }+x y^{2}-8 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 x y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1+y\right ) y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-x y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime } = 3 \left (y-2\right )^{{1}/{3}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x +x y\right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime }+3 x y = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 x y-x \,{\mathrm e}^{-x^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y^{\prime }+y = 2 x^{{5}/{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \cos \left (x \right ) y^{\prime }+y = \cos \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {y}{\sqrt {x^{2}+1}} = \frac {1}{x +\sqrt {x^{2}+1}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left ({\mathrm e}^{x}+1\right ) y^{\prime }+2 y \,{\mathrm e}^{x} = \left ({\mathrm e}^{x}+1\right ) {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \ln \left (x \right ) y^{\prime }+y = \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \left (-x^{2}+1\right ) = x y+2 x \sqrt {-x^{2}+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y \tanh \left (x \right ) = 2 \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y \cos \left (x \right ) = \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \cos \left (y \right )-x \tan \left (y \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }+x-{\mathrm e}^{y} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \frac {3 y^{{2}/{3}}-x}{3 y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y = x y^{{2}/{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {y}{x} = 2 x^{{3}/{2}} \sqrt {y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x y^{2} y^{\prime }+3 y^{3} = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x \,{\mathrm e}^{3 y}+{\mathrm e}^{x}+\left (3 x^{2} {\mathrm e}^{3 y}-y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x -y\right ) y^{\prime }+x +y+1 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \cos \left (x \right ) \cos \left (y\right )+\sin \left (x \right )^{2}-\left (\sin \left (x \right ) \sin \left (y\right )+\cos \left (y\right )^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime }+y^{2}-x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = \sqrt {x^{2}+y^{2}}-x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y+\left (-x^{2}+y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2}-x y+\left (x^{2}+x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \cos \left (x +y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y}{x}-\tan \left (\frac {y}{x}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -1\right ) y^{\prime }+y-\frac {1}{x^{2}}+\frac {2}{x^{3}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x y^{2}-\frac {2 y}{x}-\frac {1}{x^{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 y^{2}}{x}+\frac {y}{x}-2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2} {\mathrm e}^{-x}+y-{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y-4 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+9 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+16 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 6 y-5 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+5 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+13 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime }+y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime \prime }-6 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }-5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime } = 10
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y-4 y^{\prime }+y^{\prime \prime } = 16
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-3 y = 24 \,{\mathrm e}^{-3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 2 \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+6 y^{\prime }+9 y = 12 \,{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-2 y = 3 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-16 y = 40 \,{\mathrm e}^{4 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime }+y^{\prime \prime } = 2 \,{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-6 y^{\prime }+9 y = 6 \,{\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+10 y = 100 \cos \left (4 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+12 y = 80 \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 y^{\prime }+y^{\prime \prime } = 2 \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+8 y^{\prime }+25 y = 120 \sin \left (5 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 y^{\prime \prime }+12 y^{\prime }+20 y = 120 \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|