| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-\frac {y^{\prime }}{x}+x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+8 x y^{\prime \prime }+4 x^{2} y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 \sin \left (x \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [3 x^{\prime }\left (t \right )+3 x \left (t \right )+2 y \left (t \right ) = {\mathrm e}^{t}, 4 x \left (t \right )-3 y^{\prime }\left (t \right )+3 y \left (t \right ) = 3 t]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \frac {2 x}{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = -\frac {t}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = -x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+2 x^{\prime }+2 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }+2 x = t^{2}+4 t +7
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 t x^{\prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} x^{\prime \prime }-6 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{\prime \prime }-5 x^{\prime }-3 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = x \left (1-\frac {x}{4}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = t^{2}+x^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime } = t \cos \left (t^{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \frac {t +1}{\sqrt {t}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime } = -3 \sqrt {t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = t \,{\mathrm e}^{-2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \frac {1}{t \ln \left (t \right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sqrt {t}\, x^{\prime } = \cos \left (\sqrt {t}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \frac {{\mathrm e}^{-t}}{\sqrt {t}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }+t x^{\prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \sqrt {x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime } = {\mathrm e}^{-2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 1+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} u^{\prime } = \frac {1}{5-2 u}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = a x+b
\]
|
✓ |
✓ |
✓ |
|
| \[
{} Q^{\prime } = \frac {Q}{4+Q^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = {\mathrm e}^{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = r \left (a -y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \frac {2 x}{t +1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \theta ^{\prime } = t \sqrt {t^{2}+1}\, \sec \left (\theta \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 u+1\right ) u^{\prime }-t -1 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} R^{\prime } = \left (t +1\right ) \left (1+R^{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y+\frac {1}{y} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (t +1\right ) x^{\prime }+x^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1}{2 y+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \left (4 t -x\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = 2 t x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = t^{2} {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = x \left (4+x\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = {\mathrm e}^{t +x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} T^{\prime } = 2 a t \left (T^{2}-a^{2}\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = t^{2} \tan \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \frac {\left (4+2 t \right ) x}{\ln \left (x\right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 t y^{2}}{t^{2}+1}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime } = \frac {t^{2}}{1-x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = 6 t \left (x-1\right )^{{2}/{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \frac {4 t^{2}+3 x^{2}}{2 t x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } {\mathrm e}^{2 t}+2 x \,{\mathrm e}^{2 t} = {\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {x^{\prime }+t x^{\prime \prime }}{t} = -2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y^{2}+2 t y}{t^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -y^{2} {\mathrm e}^{-t^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = 2 t^{3} x-6
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \cos \left (t \right ) x^{\prime }-2 x \sin \left (x\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = t -x^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 7 t^{2} x^{\prime } = 3 x-2 t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x x^{\prime } = 1-t x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {x^{\prime }}^{2}+t x = \sqrt {t +1}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime } = -\frac {2 x}{t}+t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+y^{\prime } = {\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }+2 t x = {\mathrm e}^{-t^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t x^{\prime } = -x+t^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \theta ^{\prime } = -a \theta +{\mathrm e}^{b t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (t^{2}+1\right ) x^{\prime } = -3 t x+6 t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }+\frac {5 x}{t} = t +1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \left (a +\frac {b}{t}\right ) x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} R^{\prime }+\frac {R}{t} = \frac {2}{t^{2}+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} N^{\prime } = N-9 \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \cos \left (\theta \right ) v^{\prime }+v = 3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} R^{\prime } = \frac {R}{t}+t \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+a y = \sqrt {t +1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = 2 t x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }+\frac {{\mathrm e}^{-t} x}{t} = t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x^{\prime } = 3 t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \left (t +x\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = a x+b
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }+p \left (t \right ) x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \frac {2 x}{3 t}+\frac {2 t}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = x \left (1+{\mathrm e}^{t} x\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = -\frac {x}{t}+\frac {1}{t x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime }+2 t y-y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = a x+b x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} w^{\prime } = t w+t^{3} w^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3}+3 t x^{2} x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{3}+\frac {x}{t}+\left (x^{2}+\ln \left (t \right )\right ) x^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime } = -\frac {\sin \left (x\right )-x \sin \left (t \right )}{t \cos \left (x\right )+\cos \left (t \right )}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x+3 t x^{2} x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}-t^{2} x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t \cot \left (x\right ) x^{\prime } = -2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-4 x^{\prime }+4 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-2 x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+4 x^{\prime }+3 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-4 x^{\prime }+4 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-2 x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+4 x^{\prime }+3 x = 0
\]
|
✓ |
✓ |
✓ |
|