6.149 Problems 14801 to 14900

Table 6.297: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

14801

\[ {} y-2 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{x} \arcsin \left (x \right ) \]

14802

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{x} \]

14803

\[ {} y-2 y^{\prime }+y^{\prime \prime } = x \ln \left (x \right ) \]

14804

\[ {} x^{2} y^{\prime \prime }-6 x y^{\prime }+10 y = 3 x^{4}+6 x^{3} \]

14805

\[ {} \left (1+x \right )^{2} y^{\prime \prime }-2 y^{\prime } \left (1+x \right )+2 y = 1 \]

14806

\[ {} \left (x^{2}+2 x \right ) y^{\prime \prime }-2 y^{\prime } \left (1+x \right )+2 y = \left (x +2\right )^{2} \]

14807

\[ {} x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = x^{3} \]

14808

\[ {} x \left (x -2\right ) y^{\prime \prime }-\left (x^{2}-2\right ) y^{\prime }+2 \left (x -1\right ) y = 3 x^{2} \left (x -2\right )^{2} {\mathrm e}^{x} \]

14809

\[ {} \left (2 x +1\right ) \left (1+x \right ) y^{\prime \prime }+2 x y^{\prime }-2 y = \left (2 x +1\right )^{2} \]

14810

\[ {} \sin \left (x \right )^{2} y^{\prime \prime }-2 \sin \left (x \right ) \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )^{2}+1\right ) y = \sin \left (x \right )^{3} \]

14811

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = x^{2} {\mathrm e}^{x} \]

14812

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 0 \]

14813

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

14814

\[ {} 4 x^{2} y^{\prime \prime }-4 x y^{\prime }+3 y = 0 \]

14815

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

14816

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

14817

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0 \]

14818

\[ {} 3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

14819

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0 \]

14820

\[ {} 9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

14821

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+10 y = 0 \]

14822

\[ {} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

14823

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 x y^{\prime }-8 y = 0 \]

14824

\[ {} x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-6 x y^{\prime }+18 y = 0 \]

14825

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 4 x -6 \]

14826

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 2 x^{3} \]

14827

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 4 \ln \left (x \right ) \]

14828

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 2 x \ln \left (x \right ) \]

14829

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 4 \sin \left (\ln \left (x \right )\right ) \]

14830

\[ {} -2 y+2 x y^{\prime }-x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = x^{3} \]

14831

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }-10 y = 0 \]

14832

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

14833

\[ {} x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0 \]

14834

\[ {} x^{2} y^{\prime \prime }-2 y = 4 x -8 \]

14835

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = -6 x^{3}+4 x^{2} \]

14836

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 10 x^{2} \]

14837

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 2 x^{3} \]

14838

\[ {} x^{2} y^{\prime \prime }-6 y = \ln \left (x \right ) \]

14839

\[ {} \left (x +2\right )^{2} y^{\prime \prime }-\left (x +2\right ) y^{\prime }-3 y = 0 \]

14840

\[ {} \left (2 x -3\right )^{2} y^{\prime \prime }-6 \left (2 x -3\right ) y^{\prime }+12 y = 0 \]

14841

\[ {} y+x y^{\prime }+y^{\prime \prime } = 0 \]

14842

\[ {} y^{\prime \prime }+8 x y^{\prime }-4 y = 0 \]

14843

\[ {} y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}+1\right ) y = 0 \]

14844

\[ {} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-4\right ) y = 0 \]

14845

\[ {} y^{\prime \prime }+x y^{\prime }+\left (2+3 x \right ) y = 0 \]

14846

\[ {} y^{\prime \prime }-x y^{\prime }+\left (3 x -2\right ) y = 0 \]

14847

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+x y = 0 \]

14848

\[ {} \left (x -1\right ) y^{\prime \prime }-\left (3 x -2\right ) y^{\prime }+2 x y = 0 \]

14849

\[ {} \left (x^{3}-1\right ) y^{\prime \prime }+x^{2} y^{\prime }+x y = 0 \]

14850

\[ {} \left (x +3\right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }+y = 0 \]

14851

\[ {} y^{\prime \prime }-x y^{\prime }-y = 0 \]

14852

\[ {} y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

14853

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+2 x y = 0 \]

14854

\[ {} \left (2 x^{2}-3\right ) y^{\prime \prime }-2 x y^{\prime }+y = 0 \]

14855

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

14856

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }-y = 0 \]

14857

\[ {} x y^{\prime \prime }+y^{\prime }+2 y = 0 \]

14858

\[ {} n \left (n +1\right ) y-2 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

14859

\[ {} \left (x^{2}-3 x \right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }+y = 0 \]

14860

\[ {} \left (x^{3}+x^{2}\right ) y^{\prime \prime }+\left (x^{2}-2 x \right ) y^{\prime }+4 y = 0 \]

14861

\[ {} \left (x^{4}-2 x^{3}+x^{2}\right ) y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+x^{2} y = 0 \]

14862

\[ {} \left (x^{5}+x^{4}-6 x^{3}\right ) y^{\prime \prime }+x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

14863

\[ {} 2 x^{2} y^{\prime \prime }+x y^{\prime }+y \left (x^{2}-1\right ) = 0 \]

14864

\[ {} 2 x^{2} y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}-3\right ) y = 0 \]

14865

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+\frac {8}{9}\right ) y = 0 \]

14866

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+\left (2 x^{2}+\frac {5}{9}\right ) y = 0 \]

14867

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

14868

\[ {} 2 x y^{\prime \prime }+y^{\prime }+2 y = 0 \]

14869

\[ {} 3 x y^{\prime \prime }-\left (x -2\right ) y^{\prime }-2 y = 0 \]

14870

\[ {} x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

14871

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

14872

\[ {} x^{2} y^{\prime \prime }+\left (x^{4}+x \right ) y^{\prime }-y = 0 \]

14873

\[ {} x y^{\prime \prime }-y^{\prime } \left (x^{2}+2\right )+x y = 0 \]

14874

\[ {} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

14875

\[ {} \left (2 x^{2}-x \right ) y^{\prime \prime }+\left (-2+2 x \right ) y^{\prime }+\left (-2 x^{2}+3 x -2\right ) y = 0 \]

14876

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+\frac {3 y}{4} = 0 \]

14877

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x -1\right ) y = 0 \]

14878

\[ {} x^{2} y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }-3 y = 0 \]

14879

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+8 y \left (x^{2}-1\right ) = 0 \]

14880

\[ {} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\frac {3 y}{4} = 0 \]

14881

\[ {} x y^{\prime \prime }+y^{\prime }+2 y = 0 \]

14882

\[ {} 2 x y^{\prime \prime }+6 y^{\prime }+y = 0 \]

14883

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

14884

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}-3\right ) y = 0 \]

14885

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-2 x \left (t \right )-4 y \left (t \right ) = {\mathrm e}^{t}, x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-y \left (t \right ) = {\mathrm e}^{4 t}] \]

14886

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right ) = -2 t, x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-3 x \left (t \right )-y \left (t \right ) = t^{2}] \]

14887

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right )-3 y \left (t \right ) = {\mathrm e}^{t}, x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+x \left (t \right ) = {\mathrm e}^{3 t}] \]

14888

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right )-2 y \left (t \right ) = 2 \,{\mathrm e}^{t}, x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-3 x \left (t \right )-4 y \left (t \right ) = {\mathrm e}^{2 t}] \]

14889

\[ {} [2 x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right )-y \left (t \right ) = {\mathrm e}^{-t}, x^{\prime }\left (t \right )+2 x \left (t \right )+y^{\prime }\left (t \right )+y \left (t \right ) = {\mathrm e}^{t}] \]

14890

\[ {} [2 x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-3 x \left (t \right )-y \left (t \right ) = t, x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-4 x \left (t \right )-y \left (t \right ) = {\mathrm e}^{t}] \]

14891

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right )-6 y \left (t \right ) = {\mathrm e}^{3 t}, x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right )-2 x \left (t \right )-6 y \left (t \right ) = t] \]

14892

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right )-3 y \left (t \right ) = 3 t, x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right )-2 x \left (t \right )-3 y \left (t \right ) = 1] \]

14893

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+2 y \left (t \right ) = \sin \left (t \right ), x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right )-y \left (t \right ) = 0] \]

14894

\[ {} [x^{\prime }\left (t \right )-y^{\prime }\left (t \right )-2 x \left (t \right )+4 y \left (t \right ) = t, x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right )-y \left (t \right ) = 1] \]

14895

\[ {} [2 x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+x \left (t \right )+5 y \left (t \right ) = 4 t, x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+2 x \left (t \right )+2 y \left (t \right ) = 2] \]

14896

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right )+5 y \left (t \right ) = t^{2}, x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right )-2 x \left (t \right )+4 y \left (t \right ) = 2 t +1] \]

14897

\[ {} [2 x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+x \left (t \right )+y \left (t \right ) = t^{2}+4 t, x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+2 x \left (t \right )+2 y \left (t \right ) = 2 t^{2}-2 t] \]

14898

\[ {} [3 x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right )-x \left (t \right )+y \left (t \right ) = t -1, x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right ) = t +2] \]

14899

\[ {} [2 x^{\prime }\left (t \right )+4 y^{\prime }\left (t \right )+x \left (t \right )-y \left (t \right ) = 3 \,{\mathrm e}^{t}, x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+2 x \left (t \right )+2 y \left (t \right ) = {\mathrm e}^{t}] \]

14900

\[ {} [2 x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right )-y \left (t \right ) = -2 t, x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+x \left (t \right )-y \left (t \right ) = t^{2}] \]