6.160 Problems 15901 to 16000

Table 6.319: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

15901

\[ {} y^{\prime } = y \left (1-y\right ) \]

15902

\[ {} y^{\prime } = \frac {4 t}{1+3 y^{2}} \]

15903

\[ {} v^{\prime } = t^{2} v-2-2 v+t^{2} \]

15904

\[ {} y^{\prime } = \frac {1}{t y+t +y+1} \]

15905

\[ {} y^{\prime } = \frac {{\mathrm e}^{t} y}{1+y^{2}} \]

15906

\[ {} y^{\prime } = y^{2}-4 \]

15907

\[ {} w^{\prime } = \frac {w}{t} \]

15908

\[ {} y^{\prime } = \sec \left (y\right ) \]

15909

\[ {} x^{\prime } = -t x \]

15910

\[ {} y^{\prime } = t y \]

15911

\[ {} y^{\prime } = -y^{2} \]

15912

\[ {} y^{\prime } = t^{2} y^{3} \]

15913

\[ {} y^{\prime } = -y^{2} \]

15914

\[ {} y^{\prime } = \frac {t}{y-t^{2} y} \]

15915

\[ {} y^{\prime } = 2 y+1 \]

15916

\[ {} y^{\prime } = t y^{2}+2 y^{2} \]

15917

\[ {} x^{\prime } = \frac {t^{2}}{x+t^{3} x} \]

15918

\[ {} y^{\prime } = \frac {1-y^{2}}{y} \]

15919

\[ {} y^{\prime } = \left (1+y^{2}\right ) t \]

15920

\[ {} y^{\prime } = \frac {1}{2 y+3} \]

15921

\[ {} y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \]

15922

\[ {} y^{\prime } = \frac {y^{2}+5}{y} \]

15923

\[ {} y^{\prime } = t^{2}+t \]

15924

\[ {} y^{\prime } = t^{2}+1 \]

15925

\[ {} y^{\prime } = 1-2 y \]

15926

\[ {} y^{\prime } = 4 y^{2} \]

15927

\[ {} y^{\prime } = 2 y \left (1-y\right ) \]

15928

\[ {} y^{\prime } = t +y+1 \]

15929

\[ {} y^{\prime } = 3 y \left (1-y\right ) \]

15930

\[ {} y^{\prime } = 2 y-t \]

15931

\[ {} y^{\prime } = \left (y+\frac {1}{2}\right ) \left (y+t \right ) \]

15932

\[ {} y^{\prime } = \left (t +1\right ) y \]

15933

\[ {} S^{\prime } = S^{3}-2 S^{2}+S \]

15934

\[ {} S^{\prime } = S^{3}-2 S^{2}+S \]

15935

\[ {} S^{\prime } = S^{3}-2 S^{2}+S \]

15936

\[ {} S^{\prime } = S^{3}-2 S^{2}+S \]

15937

\[ {} S^{\prime } = S^{3}-2 S^{2}+S \]

15938

\[ {} y^{\prime } = y^{2}+y \]

15939

\[ {} y^{\prime } = y^{2}-y \]

15940

\[ {} y^{\prime } = y^{3}+y^{2} \]

15941

\[ {} y^{\prime } = -t^{2}+2 \]

15942

\[ {} y^{\prime } = t y+t y^{2} \]

15943

\[ {} y^{\prime } = t^{2}+t^{2} y \]

15944

\[ {} y^{\prime } = t +t y \]

15945

\[ {} y^{\prime } = t^{2}-2 \]

15946

\[ {} \theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10} \]

15947

\[ {} \theta ^{\prime } = 2 \]

15948

\[ {} \theta ^{\prime } = \frac {11}{10}-\frac {9 \cos \left (\theta \right )}{10} \]

15949

\[ {} v^{\prime } = -\frac {v}{R C} \]

15950

\[ {} v^{\prime } = \frac {K -v}{R C} \]

15951

\[ {} v^{\prime } = 2 V \left (t \right )-2 v \]

15952

\[ {} y^{\prime } = 2 y+1 \]

15953

\[ {} y^{\prime } = t -y^{2} \]

15954

\[ {} y^{\prime } = y^{2}-4 t \]

15955

\[ {} y^{\prime } = \sin \left (y\right ) \]

15956

\[ {} w^{\prime } = \left (3-w\right ) \left (w+1\right ) \]

15957

\[ {} w^{\prime } = \left (3-w\right ) \left (w+1\right ) \]

15958

\[ {} y^{\prime } = {\mathrm e}^{\frac {2}{y}} \]

15959

\[ {} y^{\prime } = {\mathrm e}^{\frac {2}{y}} \]

15960

\[ {} y^{\prime } = y^{2}-y^{3} \]

15961

\[ {} y^{\prime } = 2 y^{3}+t^{2} \]

15962

\[ {} y^{\prime } = \sqrt {y} \]

15963

\[ {} y^{\prime } = 2-y \]

15964

\[ {} \theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10} \]

15965

\[ {} y^{\prime } = y \left (-1+y\right ) \left (y-3\right ) \]

15966

\[ {} y^{\prime } = y \left (-1+y\right ) \left (y-3\right ) \]

15967

\[ {} y^{\prime } = y \left (-1+y\right ) \left (y-3\right ) \]

15968

\[ {} y^{\prime } = y \left (-1+y\right ) \left (y-3\right ) \]

15969

\[ {} y^{\prime } = -y^{2} \]

15970

\[ {} y^{\prime } = y^{3} \]

15971

\[ {} y^{\prime } = \frac {1}{\left (y+1\right ) \left (t -2\right )} \]

15972

\[ {} y^{\prime } = \frac {1}{\left (y+2\right )^{2}} \]

15973

\[ {} y^{\prime } = \frac {t}{-2+y} \]

15974

\[ {} y^{\prime } = 3 y \left (-2+y\right ) \]

15975

\[ {} y^{\prime } = 3 y \left (-2+y\right ) \]

15976

\[ {} y^{\prime } = 3 y \left (-2+y\right ) \]

15977

\[ {} y^{\prime } = 3 y \left (-2+y\right ) \]

15978

\[ {} y^{\prime } = y^{2}-4 y-12 \]

15979

\[ {} y^{\prime } = y^{2}-4 y-12 \]

15980

\[ {} y^{\prime } = y^{2}-4 y-12 \]

15981

\[ {} y^{\prime } = y^{2}-4 y-12 \]

15982

\[ {} y^{\prime } = \cos \left (y\right ) \]

15983

\[ {} y^{\prime } = \cos \left (y\right ) \]

15984

\[ {} y^{\prime } = \cos \left (y\right ) \]

15985

\[ {} y^{\prime } = \cos \left (y\right ) \]

15986

\[ {} w^{\prime } = w \cos \left (w\right ) \]

15987

\[ {} w^{\prime } = w \cos \left (w\right ) \]

15988

\[ {} w^{\prime } = w \cos \left (w\right ) \]

15989

\[ {} w^{\prime } = w \cos \left (w\right ) \]

15990

\[ {} w^{\prime } = w \cos \left (w\right ) \]

15991

\[ {} w^{\prime } = \left (1-w\right ) \sin \left (w\right ) \]

15992

\[ {} y^{\prime } = \frac {1}{-2+y} \]

15993

\[ {} v^{\prime } = -v^{2}-2 v-2 \]

15994

\[ {} w^{\prime } = 3 w^{3}-12 w^{2} \]

15995

\[ {} y^{\prime } = 1+\cos \left (y\right ) \]

15996

\[ {} y^{\prime } = \tan \left (y\right ) \]

15997

\[ {} y^{\prime } = y \ln \left ({| y|}\right ) \]

15998

\[ {} w^{\prime } = \left (w^{2}-2\right ) \arctan \left (w\right ) \]

15999

\[ {} y^{\prime } = y^{2}-4 y+2 \]

16000

\[ {} y^{\prime } = y^{2}-4 y+2 \]