| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime } = y \left (1-y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {4 t}{1+3 y^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} v^{\prime } = t^{2} v-2-2 v+t^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1}{t y+t +y+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {{\mathrm e}^{t} y}{1+y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}-4
\]
|
✓ |
✓ |
✓ |
|
| \[
{} w^{\prime } = \frac {w}{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sec \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = -t x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = t y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = t^{2} y^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {t}{y-t^{2} y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 y+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = t y^{2}+2 y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \frac {t^{2}}{x+t^{3} x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1-y^{2}}{y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (1+y^{2}\right ) t
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1}{2 y+3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 t y^{2}+3 t^{2} y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y^{2}+5}{y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = t^{2}+t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = t^{2}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 1-2 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 4 y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 y \left (1-y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = t +y+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3 y \left (1-y\right )
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 y-t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (y+\frac {1}{2}\right ) \left (y+t \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \left (t +1\right ) y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} S^{\prime } = S^{3}-2 S^{2}+S
\]
|
✗ |
✓ |
✓ |
|
| \[
{} S^{\prime } = S^{3}-2 S^{2}+S
\]
|
✗ |
✓ |
✓ |
|
| \[
{} S^{\prime } = S^{3}-2 S^{2}+S
\]
|
✓ |
✓ |
✗ |
|
| \[
{} S^{\prime } = S^{3}-2 S^{2}+S
\]
|
✗ |
✓ |
✓ |
|
| \[
{} S^{\prime } = S^{3}-2 S^{2}+S
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}+y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}-y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{3}+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -t^{2}+2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = t y+t y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = t^{2}+t^{2} y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = t +t y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = t^{2}-2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \theta ^{\prime } = 2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \theta ^{\prime } = \frac {11}{10}-\frac {9 \cos \left (\theta \right )}{10}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} v^{\prime } = -\frac {v}{R C}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} v^{\prime } = \frac {K -v}{R C}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} v^{\prime } = 2 V \left (t \right )-2 v
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 y+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = t -y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y^{2}-4 t
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \sin \left (y\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} w^{\prime } = \left (3-w\right ) \left (w+1\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} w^{\prime } = \left (3-w\right ) \left (w+1\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = {\mathrm e}^{\frac {2}{y}}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = {\mathrm e}^{\frac {2}{y}}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}-y^{3}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 y^{3}+t^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \sqrt {y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = 2-y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y \left (-1+y\right ) \left (y-3\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y \left (-1+y\right ) \left (y-3\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y \left (-1+y\right ) \left (y-3\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y \left (-1+y\right ) \left (y-3\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = -y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1}{\left (y+1\right ) \left (t -2\right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1}{\left (y+2\right )^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {t}{-2+y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3 y \left (-2+y\right )
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3 y \left (-2+y\right )
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3 y \left (-2+y\right )
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3 y \left (-2+y\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y^{2}-4 y-12
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y^{2}-4 y-12
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y^{2}-4 y-12
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y^{2}-4 y-12
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \cos \left (y\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \cos \left (y\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \cos \left (y\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \cos \left (y\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} w^{\prime } = w \cos \left (w\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} w^{\prime } = w \cos \left (w\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} w^{\prime } = w \cos \left (w\right )
\]
|
✗ |
✓ |
✓ |
|
| \[
{} w^{\prime } = w \cos \left (w\right )
\]
|
✗ |
✓ |
✓ |
|
| \[
{} w^{\prime } = w \cos \left (w\right )
\]
|
✗ |
✓ |
✓ |
|
| \[
{} w^{\prime } = \left (1-w\right ) \sin \left (w\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1}{-2+y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} v^{\prime } = -v^{2}-2 v-2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} w^{\prime } = 3 w^{3}-12 w^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 1+\cos \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \tan \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y \ln \left ({| y|}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} w^{\prime } = \left (w^{2}-2\right ) \arctan \left (w\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}-4 y+2
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}-4 y+2
\]
|
✗ |
✓ |
✓ |
|