| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime } = y^{2}-4 y+2
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}-4 y+2
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}-4 y+2
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}-4 y+2
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y \cos \left (\frac {\pi y}{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y-y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y \sin \left (\frac {\pi y}{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{3}-y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \cos \left (\frac {\pi y}{2}\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y^{2}-y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y \sin \left (\frac {\pi y}{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}-y^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -4 y+9 \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -4 y+3 \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -3 y+4 \cos \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 y+\sin \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3 y-4 \,{\mathrm e}^{3 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y}{2}+4 \,{\mathrm e}^{\frac {t}{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 y = {\mathrm e}^{\frac {t}{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -2 y+y^{\prime } = 3 \,{\mathrm e}^{-2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+y^{\prime } = \cos \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y+y^{\prime } = \cos \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -2 y+y^{\prime } = 7 \,{\mathrm e}^{2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 y = 3 t^{2}+2 t -1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 y = t^{2}+2 t +1+{\mathrm e}^{4 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+y^{\prime } = t^{3}+\sin \left (3 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-3 y = 2 t -{\mathrm e}^{4 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+y^{\prime } = \cos \left (2 t \right )+3 \sin \left (2 t \right )+{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -\frac {y}{t}+2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {3 y}{t}+t^{5}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -\frac {y}{t +1}+t^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {2 t y}{t^{2}+1} = 3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {2 y}{t} = t^{3} {\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -\frac {y}{t +1}+2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y}{t +1}+4 t^{2}+4 t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -\frac {y}{t}+2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {2 y}{t} = 2 t^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {3 y}{t} = 2 t^{3} {\mathrm e}^{2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sin \left (t \right ) y+4
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = t^{2} y+4
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y}{t^{2}}+4 \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y+4 \cos \left (t^{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -y \,{\mathrm e}^{-t^{2}}+\cos \left (t \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {y}{\sqrt {t^{3}-3}}+t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = a t y+4 \,{\mathrm e}^{-t^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = t^{r} y+4
\]
|
✓ |
✓ |
✗ |
|
| \[
{} v^{\prime }+\frac {2 v}{5} = 3 \cos \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 y = 3 \,{\mathrm e}^{-2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = t^{2} \left (t^{2}+1\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -\sin \left (y\right )^{5}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {\left (t^{2}-4\right ) \left (y+1\right ) {\mathrm e}^{y}}{\left (t -1\right ) \left (3-y\right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sin \left (y\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (y-3\right ) \left (\sin \left (y\right ) \sin \left (t \right )+\cos \left (t \right )+1\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = y+{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3-2 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = t y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3 y+{\mathrm e}^{7 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {t y}{t^{2}+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -5 y+\sin \left (3 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = t +\frac {2 y}{t +1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 y-y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -3 y+{\mathrm e}^{-2 t}+t^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = -t x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 y+\cos \left (4 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3 y+2 \,{\mathrm e}^{3 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = t^{2} y^{3}+y^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+5 y = 3 \,{\mathrm e}^{-5 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 t y+3 t \,{\mathrm e}^{t^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {\left (t +1\right )^{2}}{\left (y+1\right )^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 t y^{2}+3 t^{2} y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 1-y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {t^{2}}{y+t^{3} y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}-2 y+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (-2+y\right ) \left (y+1-\cos \left (t \right )\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (-1+y\right ) \left (-2+y\right ) \left (y-{\mathrm e}^{\frac {t}{2}}\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = t^{2} y+1+y+t^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 y+1}{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3-y^{2}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 0]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = 3 y \left (t \right ), y^{\prime }\left (t \right ) = 3 \pi y \left (t \right )-\frac {x \left (t \right )}{3}\right ]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left [p^{\prime }\left (t \right ) = 3 p \left (t \right )-2 q \left (t \right )-7 r \left (t \right ), q^{\prime }\left (t \right ) = -2 p \left (t \right )+6 r \left (t \right ), r^{\prime }\left (t \right ) = \frac {73 q \left (t \right )}{100}+2 r \left (t \right )\right ]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -3 x \left (t \right )+2 \pi y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = \beta y \left (t \right ), y^{\prime }\left (t \right ) = \gamma x \left (t \right )-y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-5 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -2 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 1, y^{\prime }\left (t \right ) = x \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 3 x \left (t \right ), y^{\prime }\left (t \right ) = -2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -4 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-3 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|