6.162 Problems 16101 to 16200

Table 6.323: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

16101

\[ {} [x^{\prime }\left (t \right ) = -5 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-4 y \left (t \right )] \]

16102

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+4 y \left (t \right )] \]

16103

\[ {} \left [x^{\prime }\left (t \right ) = -\frac {x \left (t \right )}{2}, y^{\prime }\left (t \right ) = x \left (t \right )-\frac {y \left (t \right )}{2}\right ] \]

16104

\[ {} [x^{\prime }\left (t \right ) = 5 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = 9 x \left (t \right )] \]

16105

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )] \]

16106

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )] \]

16107

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

16108

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-4 y \left (t \right )] \]

16109

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )] \]

16110

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )] \]

16111

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )] \]

16112

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

16113

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

16114

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

16115

\[ {} [x^{\prime }\left (t \right ) = -4 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right )] \]

16116

\[ {} [x^{\prime }\left (t \right ) = -4 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right )] \]

16117

\[ {} [x^{\prime }\left (t \right ) = -4 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right )] \]

16118

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

16119

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

16120

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

16121

\[ {} [x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )] \]

16122

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -4 x \left (t \right )+6 y \left (t \right )] \]

16123

\[ {} [x^{\prime }\left (t \right ) = -3 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )] \]

16124

\[ {} [x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right )] \]

16125

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-6 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )] \]

16126

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -3 x \left (t \right )+2 y \left (t \right )] \]

16127

\[ {} [x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )] \]

16128

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -4 x \left (t \right )+6 y \left (t \right )] \]

16129

\[ {} [x^{\prime }\left (t \right ) = -3 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )] \]

16130

\[ {} [x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right )] \]

16131

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-6 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )] \]

16132

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -3 x \left (t \right )+2 y \left (t \right )] \]

16133

\[ {} \left [x^{\prime }\left (t \right ) = -\frac {9 x \left (t \right )}{10}-2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+\frac {11 y \left (t \right )}{10}\right ] \]

16134

\[ {} [x^{\prime }\left (t \right ) = -3 x \left (t \right )+10 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+3 y \left (t \right )] \]

16135

\[ {} [x^{\prime }\left (t \right ) = -3 x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right )] \]

16136

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right )] \]

16137

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-4 y \left (t \right )] \]

16138

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right )] \]

16139

\[ {} [x^{\prime }\left (t \right ) = -3 x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right )] \]

16140

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+4 y \left (t \right )] \]

16141

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-4 y \left (t \right )] \]

16142

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right )] \]

16143

\[ {} [x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = -y \left (t \right )] \]

16144

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+6 y \left (t \right )] \]

16145

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )] \]

16146

\[ {} [x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = 0] \]

16147

\[ {} [x^{\prime }\left (t \right ) = -2 y \left (t \right ), y^{\prime }\left (t \right ) = 0] \]

16148

\[ {} [x^{\prime }\left (t \right ) = -3 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+y \left (t \right )] \]

16149

\[ {} y^{\prime \prime }-6 y^{\prime }-7 y = 0 \]

16150

\[ {} y^{\prime \prime }-y^{\prime }-12 y = 0 \]

16151

\[ {} \left [x^{\prime }\left (t \right ) = \frac {y \left (t \right )}{10}, y^{\prime }\left (t \right ) = \frac {z \left (t \right )}{5}, z^{\prime }\left (t \right ) = \frac {2 x \left (t \right )}{5}\right ] \]

16152

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right ), z^{\prime }\left (t \right ) = 2 z \left (t \right )] \]

16153

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right ), z^{\prime }\left (t \right ) = -z \left (t \right )] \]

16154

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+3 z \left (t \right ), y^{\prime }\left (t \right ) = -y \left (t \right ), z^{\prime }\left (t \right ) = -3 x \left (t \right )+z \left (t \right )] \]

16155

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )-z \left (t \right ), z^{\prime }\left (t \right ) = -y \left (t \right )+2 z \left (t \right )] \]

16156

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -2 y \left (t \right ), z^{\prime }\left (t \right ) = -z \left (t \right )] \]

16157

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -2 y \left (t \right ), z^{\prime }\left (t \right ) = z \left (t \right )] \]

16158

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-4 y \left (t \right ), z^{\prime }\left (t \right ) = -z \left (t \right )] \]

16159

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-4 y \left (t \right ), z^{\prime }\left (t \right ) = 0] \]

16160

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -2 y \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = -2 z \left (t \right )] \]

16161

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = z \left (t \right ), z^{\prime }\left (t \right ) = 0] \]

16162

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = -2 y \left (t \right )+3 z \left (t \right ), z^{\prime }\left (t \right ) = -x \left (t \right )+3 y \left (t \right )-z \left (t \right )] \]

16163

\[ {} [x^{\prime }\left (t \right ) = -4 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = -y \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = 5 x \left (t \right )-5 y \left (t \right )] \]

16164

\[ {} \left [x^{\prime }\left (t \right ) = -10 x \left (t \right )+10 y \left (t \right ), y^{\prime }\left (t \right ) = 28 x \left (t \right )-y \left (t \right ), z^{\prime }\left (t \right ) = -\frac {8 z \left (t \right )}{3}\right ] \]

16165

\[ {} [x^{\prime }\left (t \right ) = -y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = z \left (t \right )] \]

16168

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right ), y^{\prime }\left (t \right ) = -2 y \left (t \right )] \]

16170

\[ {} [x^{\prime }\left (t \right ) = 0, y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

16171

\[ {} \left [x^{\prime }\left (t \right ) = \pi ^{2} x \left (t \right )+\frac {187 y \left (t \right )}{5}, y^{\prime }\left (t \right ) = \sqrt {555}\, x \left (t \right )+\frac {400617 y \left (t \right )}{5000}\right ] \]

16172

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right )] \]

16173

\[ {} [x^{\prime }\left (t \right ) = -3 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )] \]

16174

\[ {} [x^{\prime }\left (t \right ) = -3 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )] \]

16175

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )] \]

16176

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

16177

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )] \]

16178

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -4 x \left (t \right )-4 y \left (t \right )] \]

16179

\[ {} [x^{\prime }\left (t \right ) = -3 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )] \]

16180

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

16181

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

16182

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

16183

\[ {} y^{\prime \prime }+2 y = 0 \]

16184

\[ {} y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{4 t} \]

16185

\[ {} y^{\prime \prime }+6 y^{\prime }+8 y = 2 \,{\mathrm e}^{-3 t} \]

16186

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{3 t} \]

16187

\[ {} y^{\prime \prime }+4 y^{\prime }+13 y = {\mathrm e}^{-t} \]

16188

\[ {} y^{\prime \prime }+4 y^{\prime }+13 y = -3 \,{\mathrm e}^{-2 t} \]

16189

\[ {} y^{\prime \prime }+7 y^{\prime }+10 y = {\mathrm e}^{-2 t} \]

16190

\[ {} y^{\prime \prime }-5 y^{\prime }+4 y = {\mathrm e}^{4 t} \]

16191

\[ {} y^{\prime \prime }+y^{\prime }-6 y = 4 \,{\mathrm e}^{-3 t} \]

16192

\[ {} y^{\prime \prime }+6 y^{\prime }+8 y = {\mathrm e}^{-t} \]

16193

\[ {} y^{\prime \prime }+7 y^{\prime }+12 y = 3 \,{\mathrm e}^{-t} \]

16194

\[ {} y^{\prime \prime }+4 y^{\prime }+13 y = -3 \,{\mathrm e}^{-2 t} \]

16195

\[ {} y^{\prime \prime }+7 y^{\prime }+10 y = {\mathrm e}^{-2 t} \]

16196

\[ {} y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-\frac {t}{2}} \]

16197

\[ {} y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-2 t} \]

16198

\[ {} y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-4 t} \]

16199

\[ {} y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-\frac {t}{2}} \]

16200

\[ {} y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-2 t} \]