| # | ODE | Mathematica | Maple | Sympy |
| \[
{} x +y y^{\prime } {\mathrm e}^{-x} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} r^{\prime } = \frac {r^{2}}{\theta }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {3 x}{y+x^{2} y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 x}{1+2 y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 x y^{2}+4 y^{2} x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x^{2} {\mathrm e}^{-3 y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (1+y^{2}\right ) \tan \left (2 x \right )
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x \left (x^{2}+1\right ) y^{5}}{6}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {-{\mathrm e}^{x}+3 x^{2}}{2 y-11}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime } = y-x y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {{\mathrm e}^{-x}-{\mathrm e}^{x}}{3+4 y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y y^{\prime } = \frac {x}{\sqrt {x^{2}-4}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (2 x \right )+\cos \left (3 y\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✓ |
|
| \[
{} \sqrt {-x^{2}+1}\, y^{2} y^{\prime } = \arcsin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {3 x^{2}+1}{12 y^{2}-12 y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 x^{2}}{2 y^{2}-6}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 y^{2}+x y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {6-{\mathrm e}^{x}}{3+2 y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 \cos \left (2 x \right )}{10+2 y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 \left (1+x \right ) \left (1+y^{2}\right )
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {t \left (4-y\right ) y}{3}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {t y \left (4-y\right )}{t +1}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {a y+b}{d +c y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+4 y = {\mathrm e}^{-2 t}+t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -2 y+y^{\prime } = {\mathrm e}^{2 t} t^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+y^{\prime } = 1+t \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {y}{t}+y^{\prime } = 5+\cos \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -2 y+y^{\prime } = 3 \,{\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y+t y^{\prime } = \sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 t y+y^{\prime } = 16 t \,{\mathrm e}^{-t^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 t y+\left (t^{2}+1\right ) y^{\prime } = \frac {1}{\left (t^{2}+1\right )^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime } = 3 t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime }-y = t^{3} {\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+y^{\prime } = 5 \sin \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime } = 3 t^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime } = 2 t \,{\mathrm e}^{2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 y = t \,{\mathrm e}^{-2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime }+4 y = t^{2}-t +1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {2 y}{t}+y^{\prime } = \frac {\cos \left (t \right )}{t^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -2 y+y^{\prime } = {\mathrm e}^{2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y+t y^{\prime } = \sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 t^{2} y+t^{3} y^{\prime } = {\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (t +1\right ) y+t y^{\prime } = t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {y}{3} = 3 \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime }-y = {\mathrm e}^{\frac {t}{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -2 y+3 y^{\prime } = {\mathrm e}^{-\frac {\pi t}{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (t +1\right ) y+t y^{\prime } = 2 t \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y+t y^{\prime } = \frac {\sin \left (t \right )}{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \cos \left (t \right ) y+\sin \left (t \right ) y^{\prime } = {\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {y}{2}+y^{\prime } = 2 \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {4 y}{3} = 1-\frac {t}{4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {y}{4}+y^{\prime } = 3+2 \cos \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime } = 1+3 \sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -\frac {3 y}{2}+y^{\prime } = 3 t +3 \,{\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-6 y = t^{6} {\mathrm e}^{6 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {y}{t}+y^{\prime } = 3 \cos \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y+t y^{\prime } = \sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime } = 3 t^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \ln \left (t \right )+\left (t -3\right ) y^{\prime } = 2 t
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y+\left (t -4\right ) t y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \tan \left (t \right ) y+y^{\prime } = \sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 t y+\left (-t^{2}+4\right ) y^{\prime } = 3 t^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 t y+\left (-t^{2}+4\right ) y^{\prime } = 3 t^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+\ln \left (t \right ) y^{\prime } = \cot \left (t \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {-y+t}{2 t +5 y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \sqrt {1-t^{2}-y^{2}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \frac {\ln \left (t y\right )}{1-t^{2}+y^{2}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \left (t^{2}+y^{2}\right )^{{3}/{2}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \frac {t^{2}+1}{3 y-y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {\cot \left (t \right ) y}{y+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{{1}/{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -\frac {t}{2}+\frac {\sqrt {t^{2}+4 y}}{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -\frac {4 t}{y}
\]
|
✓ |
✗ |
✓ |
|
| \[
{} y^{\prime } = 2 t y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{3}+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {t^{2}}{\left (t^{3}+1\right ) y}
\]
|
✓ |
✗ |
✓ |
|
| \[
{} y^{\prime } = t \left (3-y\right ) y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y \left (3-t y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -y \left (3-t y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t \le 1 \\ 0 & 1<t \end {array}\right .
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\left (\left \{\begin {array}{cc} 2 & 0\le t \le 1 \\ 1 & 1<t \end {array}\right .\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3+2 x +\left (-2+2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2+3 x^{2}-2 x y+\left (3-x^{2}+6 y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y+2 x y^{2}+\left (2 x +2 x^{2} y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -\frac {2 y+4 x}{2 x +3 y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -\frac {4 x -2 y}{2 x -3 y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {\mathrm e}^{x} \sin \left (y\right )-2 \sin \left (x \right ) y+\left (2 \cos \left (x \right )+{\mathrm e}^{x} \cos \left (y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {\mathrm e}^{x} \sin \left (y\right )+3 y-\left (3 x -{\mathrm e}^{x} \sin \left (y\right )\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 x -2 \,{\mathrm e}^{x y} \sin \left (2 x \right )+{\mathrm e}^{x y} \cos \left (2 x \right ) y+\left (-3+{\mathrm e}^{x y} x \cos \left (2 x \right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {y}{x}+6 x +\left (\ln \left (x \right )-2\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \ln \left (y\right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x -y+\left (-x +2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 9 x^{2}+y-1-\left (4 y-x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{3}+x \left (1+y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {\sin \left (y\right )}{y}-2 \,{\mathrm e}^{-x} \sin \left (x \right )+\frac {\left (\cos \left (y\right )+2 \,{\mathrm e}^{-x} \cos \left (x \right )\right ) y^{\prime }}{y} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y+\left (2 x -{\mathrm e}^{y} y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y+3 x^{2} y+y^{3}+\left (x^{2}+y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|