6.186 Problems 18501 to 18600

Table 6.371: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

18501

\[ {} y^{\prime } \left (1+x \right )-n y = 0 \]

18502

\[ {} 9 \left (1-x \right ) x y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

18503

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (4 x^{2}-\frac {1}{9}\right ) y = 0 \]

18504

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

18505

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x}+\frac {y}{9} = 0 \]

18506

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x}+4 y = 0 \]

18507

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+4 \left (x^{4}-1\right ) y = 0 \]

18508

\[ {} x y^{\prime \prime }+\frac {y^{\prime }}{2}+\frac {y}{4} = 0 \]

18509

\[ {} y^{\prime \prime }+\frac {5 y^{\prime }}{x}+y = 0 \]

18510

\[ {} y^{\prime \prime }+\frac {3 y^{\prime }}{x}+4 y = 0 \]

18511

\[ {} 4 y+y^{\prime \prime } = \cos \left (x \right )^{2} \]

18512

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = \pi ^{2}-x^{2} \]

18513

\[ {} y^{\prime \prime }-4 y = \cos \left (\pi x \right ) \]

18514

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = \arcsin \left (\sin \left (x \right )\right ) \]

18515

\[ {} y^{\prime \prime }+9 y = \sin \left (x \right )^{3} \]

18516

\[ {} \left [x_{1}^{\prime }\left (t \right ) = -2 t x_{1} \left (t \right )^{2}, x_{2}^{\prime }\left (t \right ) = \frac {x_{2} \left (t \right )+t}{t}\right ] \]

18517

\[ {} [x_{1}^{\prime }\left (t \right ) = {\mathrm e}^{t -x_{1} \left (t \right )}, x_{2}^{\prime }\left (t \right ) = 2 \,{\mathrm e}^{x_{1} \left (t \right )}] \]

18518

\[ {} \left [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = \frac {y \left (t \right )^{2}}{x \left (t \right )}\right ] \]

18519

\[ {} \left [x_{1}^{\prime }\left (t \right ) = \frac {x_{1} \left (t \right )^{2}}{x_{2} \left (t \right )}, x_{2}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+x_{2} \left (t \right )\right ] \]

18520

\[ {} \left [x^{\prime }\left (t \right ) = \frac {{\mathrm e}^{-x \left (t \right )}}{t}, y^{\prime }\left (t \right ) = \frac {x \left (t \right ) {\mathrm e}^{-y \left (t \right )}}{t}\right ] \]

18521

\[ {} \left [x^{\prime }\left (t \right ) = \frac {y \left (t \right )+t}{x \left (t \right )+y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {x \left (t \right )-t}{x \left (t \right )+y \left (t \right )}\right ] \]

18522

\[ {} \left [x^{\prime }\left (t \right ) = \frac {-y \left (t \right )+t}{-x \left (t \right )+y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {x \left (t \right )-t}{-x \left (t \right )+y \left (t \right )}\right ] \]

18523

\[ {} \left [x^{\prime }\left (t \right ) = \frac {y \left (t \right )+t}{x \left (t \right )+y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {t +x \left (t \right )}{x \left (t \right )+y \left (t \right )}\right ] \]

18524

\[ {} [x^{\prime }\left (t \right ) = -9 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )] \]

18525

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right )+t, y^{\prime }\left (t \right ) = x \left (t \right )-t] \]

18526

\[ {} [x^{\prime }\left (t \right )+3 x \left (t \right )+4 y \left (t \right ) = 0, y^{\prime }\left (t \right )+2 x \left (t \right )+5 y \left (t \right ) = 0] \]

18527

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+5 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-3 y \left (t \right )] \]

18528

\[ {} [4 x^{\prime }\left (t \right )-y^{\prime }\left (t \right )+3 x \left (t \right ) = \sin \left (t \right ), x^{\prime }\left (t \right )+y \left (t \right ) = \cos \left (t \right )] \]

18529

\[ {} [x^{\prime }\left (t \right ) = -y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = z \left (t \right ), z^{\prime }\left (t \right ) = -x \left (t \right )+z \left (t \right )] \]

18530

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

18531

\[ {} [x^{\prime \prime }\left (t \right ) = y \left (t \right ), y^{\prime \prime }\left (t \right ) = x \left (t \right )] \]

18532

\[ {} [x^{\prime \prime }\left (t \right )+y^{\prime }\left (t \right )+x \left (t \right ) = 0, x^{\prime }\left (t \right )+y^{\prime \prime }\left (t \right ) = 0] \]

18533

\[ {} [x^{\prime \prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )] \]

18534

\[ {} [x^{\prime \prime }\left (t \right ) = x \left (t \right )^{2}+y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right ) x^{\prime }\left (t \right )+x \left (t \right )] \]

18535

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )^{2}+y \left (t \right )^{2}, y^{\prime }\left (t \right ) = 2 x \left (t \right ) y \left (t \right )] \]

18536

\[ {} \left [x^{\prime }\left (t \right ) = -\frac {1}{y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {1}{x \left (t \right )}\right ] \]

18537

\[ {} \left [x^{\prime }\left (t \right ) = \frac {x \left (t \right )}{y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {y \left (t \right )}{x \left (t \right )}\right ] \]

18538

\[ {} \left [x^{\prime }\left (t \right ) = \frac {y \left (t \right )}{x \left (t \right )-y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {x \left (t \right )}{x \left (t \right )-y \left (t \right )}\right ] \]

18539

\[ {} [x^{\prime }\left (t \right ) = \sin \left (x \left (t \right )\right ) \cos \left (y \left (t \right )\right ), y^{\prime }\left (t \right ) = \cos \left (x \left (t \right )\right ) \sin \left (y \left (t \right )\right )] \]

18540

\[ {} \left [{\mathrm e}^{t} x^{\prime }\left (t \right ) = \frac {1}{y \left (t \right )}, {\mathrm e}^{t} y^{\prime }\left (t \right ) = \frac {1}{x \left (t \right )}\right ] \]

18541

\[ {} \left [x^{\prime }\left (t \right ) = \cos \left (x \left (t \right )\right )^{2} \cos \left (y \left (t \right )\right )^{2}+\sin \left (x \left (t \right )\right )^{2} \cos \left (y \left (t \right )\right )^{2}, y^{\prime }\left (t \right ) = -\frac {\sin \left (2 x \left (t \right )\right ) \sin \left (2 y \left (t \right )\right )}{2}\right ] \]

18542

\[ {} [x^{\prime }\left (t \right ) = 8 y \left (t \right )-x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

18543

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )] \]

18544

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right )] \]

18545

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+4 y \left (t \right )] \]

18546

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )] \]

18547

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right )+z \left (t \right )-x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-z \left (t \right )] \]

18548

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )-z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+2 z \left (t \right )] \]

18549

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = y \left (t \right )-2 z \left (t \right )-3 x \left (t \right )] \]

18550

\[ {} [x^{\prime }\left (t \right )+2 x \left (t \right )-y \left (t \right ) = -{\mathrm e}^{2 t}, y^{\prime }\left (t \right )+3 x \left (t \right )-2 y \left (t \right ) = 6 \,{\mathrm e}^{2 t}] \]

18551

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-\cos \left (t \right ), y^{\prime }\left (t \right ) = -y \left (t \right )-2 x \left (t \right )+\cos \left (t \right )+\sin \left (t \right )] \]

18552

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right )+\tan \left (t \right )^{2}-1, y^{\prime }\left (t \right ) = \tan \left (t \right )-x \left (t \right )] \]

18553

\[ {} \left [x^{\prime }\left (t \right ) = -4 x \left (t \right )-2 y \left (t \right )+\frac {2}{{\mathrm e}^{t}-1}, y^{\prime }\left (t \right ) = 6 x \left (t \right )+3 y \left (t \right )-\frac {3}{{\mathrm e}^{t}-1}\right ] \]

18554

\[ {} \left [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+\frac {1}{\cos \left (t \right )}\right ] \]

18555

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = 1-x \left (t \right )] \]

18556

\[ {} [x^{\prime }\left (t \right ) = 3-2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-2 t] \]

18557

\[ {} [x^{\prime }\left (t \right ) = -y \left (t \right )+\sin \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+\cos \left (t \right )] \]

18558

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+{\mathrm e}^{t}, y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-{\mathrm e}^{t}] \]

18559

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-5 y \left (t \right )+4 t -1, y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )+t] \]

18560

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right )+{\mathrm e}^{t}, y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+{\mathrm e}^{t}] \]

18561

\[ {} [x^{\prime }\left (t \right )+y \left (t \right ) = t^{2}, -x \left (t \right )+y^{\prime }\left (t \right ) = t] \]

18562

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+y \left (t \right ) = {\mathrm e}^{-t}, 2 x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+2 y \left (t \right ) = \sin \left (t \right )] \]

18563

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )-2 z \left (t \right )+2-t, y^{\prime }\left (t \right ) = 1-x \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-z \left (t \right )+1-t] \]

18564

\[ {} [x^{\prime }\left (t \right )+x \left (t \right )+2 y \left (t \right ) = 2 \,{\mathrm e}^{-t}, y^{\prime }\left (t \right )+y \left (t \right )+z \left (t \right ) = 1, z^{\prime }\left (t \right )+z \left (t \right ) = 1] \]

18565

\[ {} [x^{\prime }\left (t \right ) = 5 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )] \]

18566

\[ {} [x^{\prime }\left (t \right ) = 6 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+3 y \left (t \right )] \]

18567

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-4 y \left (t \right )+1, y^{\prime }\left (t \right ) = -x \left (t \right )+5 y \left (t \right )] \]

18568

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )+{\mathrm e}^{t}, y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )-{\mathrm e}^{t}] \]

18569

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+4 y \left (t \right )+\cos \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right )+\sin \left (t \right )] \]

18570

\[ {} x^{\prime }+3 x = {\mathrm e}^{-2 t} \]

18571

\[ {} x^{\prime }-3 x = 3 t^{3}+3 t^{2}+2 t +1 \]

18572

\[ {} x^{\prime }-x = \cos \left (t \right )-\sin \left (t \right ) \]

18573

\[ {} 2 x^{\prime }+6 x = t \,{\mathrm e}^{-3 t} \]

18574

\[ {} x^{\prime }+x = 2 \sin \left (t \right ) \]

18575

\[ {} x^{\prime \prime } = 0 \]

18576

\[ {} x^{\prime \prime } = 1 \]

18577

\[ {} x^{\prime \prime } = \cos \left (t \right ) \]

18578

\[ {} x^{\prime \prime }+x^{\prime } = 0 \]

18579

\[ {} x^{\prime \prime }+x^{\prime } = 0 \]

18580

\[ {} x^{\prime \prime }-x^{\prime } = 1 \]

18581

\[ {} x^{\prime \prime }+x = t \]

18582

\[ {} x^{\prime \prime }+6 x^{\prime } = 12 t +2 \]

18583

\[ {} x^{\prime \prime }-2 x^{\prime }+2 x = 2 \]

18584

\[ {} x^{\prime \prime }+4 x^{\prime }+4 x = 4 \]

18585

\[ {} 2 x^{\prime \prime }-2 x^{\prime } = \left (t +1\right ) {\mathrm e}^{t} \]

18586

\[ {} x^{\prime \prime }+x = 2 \cos \left (t \right ) \]

18587

\[ {} y^{\prime } = \frac {x^{4}}{y} \]

18588

\[ {} y^{\prime } = \frac {x^{2} \left (x^{3}+1\right )}{y} \]

18589

\[ {} y^{\prime }+y^{3} \sin \left (x \right ) = 0 \]

18590

\[ {} y^{\prime } = \frac {7 x^{2}-1}{7+5 y} \]

18591

\[ {} y^{\prime } = \sin \left (2 x \right )^{2} \cos \left (y\right )^{2} \]

18592

\[ {} x y^{\prime } = \sqrt {1-y^{2}} \]

18593

\[ {} y y^{\prime } = \left (x y^{2}+x \right ) {\mathrm e}^{x^{2}} \]

18594

\[ {} y^{\prime } = \frac {x^{2}+{\mathrm e}^{-x}}{y^{2}-{\mathrm e}^{y}} \]

18595

\[ {} y^{\prime } = \frac {x^{2}}{1+y^{2}} \]

18596

\[ {} y^{\prime } = \frac {\sec \left (x \right )^{2}}{y^{3}+1} \]

18597

\[ {} y^{\prime } = 4 \sqrt {x y} \]

18598

\[ {} y^{\prime } = x \left (y-y^{2}\right ) \]

18599

\[ {} y^{\prime } = \left (1-12 x \right ) y^{2} \]

18600

\[ {} y^{\prime } = \frac {3-2 x}{y} \]