| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime } \left (1+x \right )-n y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 9 \left (1-x \right ) x y^{\prime \prime }-12 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (4 x^{2}-\frac {1}{9}\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\frac {y^{\prime }}{x}+\frac {y}{9} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\frac {y^{\prime }}{x}+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-2 x y^{\prime }+4 \left (x^{4}-1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+\frac {y^{\prime }}{2}+\frac {y}{4} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\frac {5 y^{\prime }}{x}+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\frac {3 y^{\prime }}{x}+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = \cos \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y-4 y^{\prime }+y^{\prime \prime } = \pi ^{2}-x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y = \cos \left (\pi x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y-4 y^{\prime }+y^{\prime \prime } = \arcsin \left (\sin \left (x \right )\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+9 y = \sin \left (x \right )^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left [x_{1}^{\prime }\left (t \right ) = -2 t x_{1} \left (t \right )^{2}, x_{2}^{\prime }\left (t \right ) = \frac {x_{2} \left (t \right )+t}{t}\right ]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [x_{1}^{\prime }\left (t \right ) = {\mathrm e}^{t -x_{1} \left (t \right )}, x_{2}^{\prime }\left (t \right ) = 2 \,{\mathrm e}^{x_{1} \left (t \right )}]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = \frac {y \left (t \right )^{2}}{x \left (t \right )}\right ]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left [x_{1}^{\prime }\left (t \right ) = \frac {x_{1} \left (t \right )^{2}}{x_{2} \left (t \right )}, x_{2}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+x_{2} \left (t \right )\right ]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = \frac {{\mathrm e}^{-x \left (t \right )}}{t}, y^{\prime }\left (t \right ) = \frac {x \left (t \right ) {\mathrm e}^{-y \left (t \right )}}{t}\right ]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = \frac {y \left (t \right )+t}{x \left (t \right )+y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {x \left (t \right )-t}{x \left (t \right )+y \left (t \right )}\right ]
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = \frac {-y \left (t \right )+t}{-x \left (t \right )+y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {x \left (t \right )-t}{-x \left (t \right )+y \left (t \right )}\right ]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = \frac {y \left (t \right )+t}{x \left (t \right )+y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {t +x \left (t \right )}{x \left (t \right )+y \left (t \right )}\right ]
\]
|
✗ |
✓ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = -9 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = y \left (t \right )+t, y^{\prime }\left (t \right ) = x \left (t \right )-t]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right )+3 x \left (t \right )+4 y \left (t \right ) = 0, y^{\prime }\left (t \right )+2 x \left (t \right )+5 y \left (t \right ) = 0]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+5 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-3 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [4 x^{\prime }\left (t \right )-y^{\prime }\left (t \right )+3 x \left (t \right ) = \sin \left (t \right ), x^{\prime }\left (t \right )+y \left (t \right ) = \cos \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = z \left (t \right ), z^{\prime }\left (t \right ) = -x \left (t \right )+z \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime \prime }\left (t \right ) = y \left (t \right ), y^{\prime \prime }\left (t \right ) = x \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime \prime }\left (t \right )+y^{\prime }\left (t \right )+x \left (t \right ) = 0, x^{\prime }\left (t \right )+y^{\prime \prime }\left (t \right ) = 0]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime \prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime \prime }\left (t \right ) = x \left (t \right )^{2}+y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right ) x^{\prime }\left (t \right )+x \left (t \right )]
\]
|
✗ |
✓ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )^{2}+y \left (t \right )^{2}, y^{\prime }\left (t \right ) = 2 x \left (t \right ) y \left (t \right )]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = -\frac {1}{y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {1}{x \left (t \right )}\right ]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = \frac {x \left (t \right )}{y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {y \left (t \right )}{x \left (t \right )}\right ]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = \frac {y \left (t \right )}{x \left (t \right )-y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {x \left (t \right )}{x \left (t \right )-y \left (t \right )}\right ]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = \sin \left (x \left (t \right )\right ) \cos \left (y \left (t \right )\right ), y^{\prime }\left (t \right ) = \cos \left (x \left (t \right )\right ) \sin \left (y \left (t \right )\right )]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left [{\mathrm e}^{t} x^{\prime }\left (t \right ) = \frac {1}{y \left (t \right )}, {\mathrm e}^{t} y^{\prime }\left (t \right ) = \frac {1}{x \left (t \right )}\right ]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = \cos \left (x \left (t \right )\right )^{2} \cos \left (y \left (t \right )\right )^{2}+\sin \left (x \left (t \right )\right )^{2} \cos \left (y \left (t \right )\right )^{2}, y^{\prime }\left (t \right ) = -\frac {\sin \left (2 x \left (t \right )\right ) \sin \left (2 y \left (t \right )\right )}{2}\right ]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = 8 y \left (t \right )-x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+4 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = y \left (t \right )+z \left (t \right )-x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-z \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )-z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+2 z \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = y \left (t \right )-2 z \left (t \right )-3 x \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right )+2 x \left (t \right )-y \left (t \right ) = -{\mathrm e}^{2 t}, y^{\prime }\left (t \right )+3 x \left (t \right )-2 y \left (t \right ) = 6 \,{\mathrm e}^{2 t}]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-\cos \left (t \right ), y^{\prime }\left (t \right ) = -y \left (t \right )-2 x \left (t \right )+\cos \left (t \right )+\sin \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = y \left (t \right )+\tan \left (t \right )^{2}-1, y^{\prime }\left (t \right ) = \tan \left (t \right )-x \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = -4 x \left (t \right )-2 y \left (t \right )+\frac {2}{{\mathrm e}^{t}-1}, y^{\prime }\left (t \right ) = 6 x \left (t \right )+3 y \left (t \right )-\frac {3}{{\mathrm e}^{t}-1}\right ]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+\frac {1}{\cos \left (t \right )}\right ]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = 1-x \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 3-2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-2 t]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -y \left (t \right )+\sin \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+\cos \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+{\mathrm e}^{t}, y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-{\mathrm e}^{t}]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-5 y \left (t \right )+4 t -1, y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )+t]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right )+{\mathrm e}^{t}, y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+{\mathrm e}^{t}]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right )+y \left (t \right ) = t^{2}, -x \left (t \right )+y^{\prime }\left (t \right ) = t]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+y \left (t \right ) = {\mathrm e}^{-t}, 2 x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+2 y \left (t \right ) = \sin \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )-2 z \left (t \right )+2-t, y^{\prime }\left (t \right ) = 1-x \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-z \left (t \right )+1-t]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right )+x \left (t \right )+2 y \left (t \right ) = 2 \,{\mathrm e}^{-t}, y^{\prime }\left (t \right )+y \left (t \right )+z \left (t \right ) = 1, z^{\prime }\left (t \right )+z \left (t \right ) = 1]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 5 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 6 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+3 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-4 y \left (t \right )+1, y^{\prime }\left (t \right ) = -x \left (t \right )+5 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )+{\mathrm e}^{t}, y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )-{\mathrm e}^{t}]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+4 y \left (t \right )+\cos \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right )+\sin \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }+3 x = {\mathrm e}^{-2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }-3 x = 3 t^{3}+3 t^{2}+2 t +1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }-x = \cos \left (t \right )-\sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{\prime }+6 x = t \,{\mathrm e}^{-3 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }+x = 2 \sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime } = \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-x^{\prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x = t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+6 x^{\prime } = 12 t +2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-2 x^{\prime }+2 x = 2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+4 x^{\prime }+4 x = 4
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{\prime \prime }-2 x^{\prime } = \left (t +1\right ) {\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x = 2 \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x^{4}}{y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x^{2} \left (x^{3}+1\right )}{y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y^{3} \sin \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {7 x^{2}-1}{7+5 y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sin \left (2 x \right )^{2} \cos \left (y\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime } = \sqrt {1-y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = \left (x y^{2}+x \right ) {\mathrm e}^{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x^{2}+{\mathrm e}^{-x}}{y^{2}-{\mathrm e}^{y}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x^{2}}{1+y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {\sec \left (x \right )^{2}}{y^{3}+1}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = 4 \sqrt {x y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x \left (y-y^{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (1-12 x \right ) y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {3-2 x}{y}
\]
|
✓ |
✓ |
✓ |
|