| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime } = -1+{\mathrm e}^{2 x}+y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {y^{\prime }}{-\sin \left (y\right )+\frac {x}{y}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+\left (-{\mathrm e}^{-2 y}+2 x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 \csc \left (y\right ) y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {4 x^{3}}{y^{2}}+\frac {12}{y}+3 \left (\frac {x}{y^{2}}+4 y\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 x y+y^{2}+\left (x^{2}+x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = 1+x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1+y^{4}\right ) y^{\prime } = x^{4}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {\left (3 x^{3}-x y^{2}\right ) y^{\prime }}{y^{3}+3 x^{2} y} = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (x -1\right ) y^{\prime } = y \left (1+y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+\sqrt {x^{2}-y^{2}} = x y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } x = \left (x +y\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {4 y-7 x}{5 x -y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }-4 \sqrt {-x^{2}+y^{2}} = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y^{4}+2 x y^{3}-3 x^{2} y^{2}-2 x^{3} y}{2 x^{2} y^{2}-2 x^{3} y-2 x^{4}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y+x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = y \,{\mathrm e}^{\frac {x}{y}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } x = x^{2}+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x +y}{x -y}
\]
|
✓ |
✗ |
✓ |
|
| \[
{} t y^{\prime }+y = t^{2} y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y \left (t y^{3}-1\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {3 y}{t} = t^{2} y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime }+2 t y-y^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 \left (t^{2}+1\right ) y^{\prime } = 4 t y \left (y^{3}-1\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 t y^{\prime }+9 y = 2 t y^{{5}/{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y+\sqrt {y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = r y-k^{2} y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = a y+b y^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+3 t y = 4-4 t^{2}+y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (3 x-y \right ) x^{\prime }+9 y -2 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1 = \left (3 \,{\mathrm e}^{y}-2 x \right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-4 y^{2} {\mathrm e}^{x} = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+\left (1+x \right ) y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x y^{2}-\frac {\sin \left (2 x \right )}{2}}{\left (-x^{2}+1\right ) y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {\sqrt {x}\, y^{\prime }}{y} = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 x y^{2}+5 y+\left (5 x^{2} y+5 x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y y^{\prime } x +\ln \left (x \right ) = -1-y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2-x \right ) y^{\prime } = y+2 \left (2-x \right )^{5}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = -\frac {1}{\ln \left (x \right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \frac {2 x y +x^{2}}{3 y^{2}+2 x y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 y y^{\prime } x = 8 x^{2}+5 y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y-y^{{1}/{4}} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = 4+x \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )+\sin \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )-\cos \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -2 t x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )+4, y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )-3]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -x \left (t \right )+t y \left (t \right ), y^{\prime }\left (t \right ) = t x \left (t \right )-y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+4, y^{\prime }\left (t \right ) = -2 x \left (t \right )+\sin \left (t \right ) y \left (t \right )]
\]
|
✗ |
✓ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+2 \sin \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )-4 y \left (t \right )+2 t, y^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right )-3]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )+1, y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-3]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -x \left (t \right )-4 y \left (t \right )-4, y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )-6]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = -\frac {x \left (t \right )}{4}-\frac {3 y \left (t \right )}{4}+8, y^{\prime }\left (t \right ) = \frac {x \left (t \right )}{2}+y \left (t \right )-\frac {23}{2}\right ]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )-11, y^{\prime }\left (t \right ) = -5 x \left (t \right )+4 y \left (t \right )-35]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-3, y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )+1]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -5 x \left (t \right )+4 y \left (t \right )-35, y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )-11]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 8 x \left (t \right )-6 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = \frac {5 x \left (t \right )}{4}+\frac {3 y \left (t \right )}{4}, y^{\prime }\left (t \right ) = \frac {3 x \left (t \right )}{4}+\frac {5 y \left (t \right )}{4}\right ]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = -\frac {3 x \left (t \right )}{4}-\frac {7 y \left (t \right )}{4}, y^{\prime }\left (t \right ) = \frac {x \left (t \right )}{4}+\frac {5 y \left (t \right )}{4}\right ]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = -\frac {x \left (t \right )}{4}-\frac {3 y \left (t \right )}{4}, y^{\prime }\left (t \right ) = \frac {x \left (t \right )}{2}+y \left (t \right )\right ]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 5 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -5 x \left (t \right )+4 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 3 x \left (t \right )+6 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 5 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -5 x \left (t \right )+4 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = 2 x \left (t \right )-\frac {5 y \left (t \right )}{2}, y^{\prime }\left (t \right ) = \frac {9 x \left (t \right )}{5}-y \left (t \right )\right ]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )-3 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -5 x \left (t \right )-y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -3 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = \frac {3 x \left (t \right )}{4}-2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-\frac {5 y \left (t \right )}{4}\right ]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = -\frac {4 x \left (t \right )}{5}+2 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+\frac {6 y \left (t \right )}{5}\right ]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = a x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+a y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -5 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+a y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = a x \left (t \right )-2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = \frac {5 x \left (t \right )}{4}+\frac {3 y \left (t \right )}{4}, y^{\prime }\left (t \right ) = a x \left (t \right )+\frac {5 y \left (t \right )}{4}\right ]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -x \left (t \right )+a y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 3 x \left (t \right )+a y \left (t \right ), y^{\prime }\left (t \right ) = -6 x \left (t \right )-4 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = a x \left (t \right )+10 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-4 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 4 x \left (t \right )+a y \left (t \right ), y^{\prime }\left (t \right ) = 8 x \left (t \right )-6 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left [i^{\prime }\left (t \right ) = \frac {i \left (t \right )}{2}-\frac {v \left (t \right )}{8}, v^{\prime }\left (t \right ) = 2 i \left (t \right )-\frac {v \left (t \right )}{2}\right ]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = \frac {5 x \left (t \right )}{4}+\frac {3 y \left (t \right )}{4}, y^{\prime }\left (t \right ) = -\frac {3 x \left (t \right )}{4}-\frac {y \left (t \right )}{4}\right ]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = -\frac {3 x \left (t \right )}{2}+y \left (t \right ), y^{\prime }\left (t \right ) = -\frac {x \left (t \right )}{4}-\frac {y \left (t \right )}{2}\right ]
\]
|
✓ |
✓ |
✓ |
|