6.188 Problems 18701 to 18800

Table 6.375: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

18701

\[ {} y^{\prime } = -1+{\mathrm e}^{2 x}+y \]

18702

\[ {} \frac {y^{\prime }}{-\sin \left (y\right )+\frac {x}{y}} = 0 \]

18703

\[ {} y+\left (-{\mathrm e}^{-2 y}+2 x y\right ) y^{\prime } = 0 \]

18704

\[ {} {\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 \csc \left (y\right ) y\right ) y^{\prime } = 0 \]

18705

\[ {} \frac {4 x^{3}}{y^{2}}+\frac {12}{y}+3 \left (\frac {x}{y^{2}}+4 y\right ) y^{\prime } = 0 \]

18706

\[ {} 3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime } = 0 \]

18707

\[ {} 3 x y+y^{2}+\left (x^{2}+x y\right ) y^{\prime } = 0 \]

18708

\[ {} y y^{\prime } = 1+x \]

18709

\[ {} \left (1+y^{4}\right ) y^{\prime } = x^{4}+1 \]

18710

\[ {} \frac {\left (3 x^{3}-x y^{2}\right ) y^{\prime }}{y^{3}+3 x^{2} y} = 1 \]

18711

\[ {} x \left (x -1\right ) y^{\prime } = y \left (1+y\right ) \]

18712

\[ {} y+\sqrt {x^{2}-y^{2}} = x y^{\prime } \]

18713

\[ {} y y^{\prime } x = \left (x +y\right )^{2} \]

18714

\[ {} y^{\prime } = \frac {4 y-7 x}{5 x -y} \]

18715

\[ {} x y^{\prime }-4 \sqrt {-x^{2}+y^{2}} = y \]

18716

\[ {} y^{\prime } = \frac {y^{4}+2 x y^{3}-3 x^{2} y^{2}-2 x^{3} y}{2 x^{2} y^{2}-2 x^{3} y-2 x^{4}} \]

18717

\[ {} \left (y+x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = y \,{\mathrm e}^{\frac {x}{y}} \]

18718

\[ {} y y^{\prime } x = x^{2}+y^{2} \]

18719

\[ {} y^{\prime } = \frac {x +y}{x -y} \]

18720

\[ {} t y^{\prime }+y = t^{2} y^{2} \]

18721

\[ {} y^{\prime } = y \left (t y^{3}-1\right ) \]

18722

\[ {} y^{\prime }+\frac {3 y}{t} = t^{2} y^{2} \]

18723

\[ {} t^{2} y^{\prime }+2 t y-y^{3} = 0 \]

18724

\[ {} 5 \left (t^{2}+1\right ) y^{\prime } = 4 t y \left (y^{3}-1\right ) \]

18725

\[ {} 3 t y^{\prime }+9 y = 2 t y^{{5}/{3}} \]

18726

\[ {} y^{\prime } = y+\sqrt {y} \]

18727

\[ {} y^{\prime } = r y-k^{2} y^{2} \]

18728

\[ {} y^{\prime } = a y+b y^{3} \]

18729

\[ {} y^{\prime }+3 t y = 4-4 t^{2}+y^{2} \]

18730

\[ {} \left (3 x-y \right ) x^{\prime }+9 y -2 x = 0 \]

18731

\[ {} 1 = \left (3 \,{\mathrm e}^{y}-2 x \right ) y^{\prime } \]

18732

\[ {} y^{\prime }-4 y^{2} {\mathrm e}^{x} = y \]

18733

\[ {} x y^{\prime }+\left (1+x \right ) y = x \]

18734

\[ {} y^{\prime } = \frac {x y^{2}-\frac {\sin \left (2 x \right )}{2}}{\left (-x^{2}+1\right ) y} \]

18735

\[ {} \frac {\sqrt {x}\, y^{\prime }}{y} = 1 \]

18736

\[ {} 5 x y^{2}+5 y+\left (5 x^{2} y+5 x \right ) y^{\prime } = 0 \]

18737

\[ {} 2 y y^{\prime } x +\ln \left (x \right ) = -1-y^{2} \]

18738

\[ {} \left (2-x \right ) y^{\prime } = y+2 \left (2-x \right )^{5} \]

18739

\[ {} x y^{\prime } = -\frac {1}{\ln \left (x \right )} \]

18740

\[ {} x^{\prime } = \frac {2 x y +x^{2}}{3 y^{2}+2 x y} \]

18741

\[ {} 4 y y^{\prime } x = 8 x^{2}+5 y^{2} \]

18742

\[ {} y^{\prime }+y-y^{{1}/{4}} = 0 \]

18743

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = 4+x \left (t \right )] \]

18744

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )+\sin \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )-\cos \left (t \right )] \]

18745

\[ {} [x^{\prime }\left (t \right ) = -2 t x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right )] \]

18746

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )+4, y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )-3] \]

18747

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )] \]

18748

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+t y \left (t \right ), y^{\prime }\left (t \right ) = t x \left (t \right )-y \left (t \right )] \]

18749

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+4, y^{\prime }\left (t \right ) = -2 x \left (t \right )+\sin \left (t \right ) y \left (t \right )] \]

18750

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )] \]

18751

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )] \]

18752

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right )] \]

18753

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+2 \sin \left (t \right )] \]

18754

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-4 y \left (t \right )+2 t, y^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right )-3] \]

18755

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )+1, y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-3] \]

18756

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )-4 y \left (t \right )-4, y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )-6] \]

18757

\[ {} \left [x^{\prime }\left (t \right ) = -\frac {x \left (t \right )}{4}-\frac {3 y \left (t \right )}{4}+8, y^{\prime }\left (t \right ) = \frac {x \left (t \right )}{2}+y \left (t \right )-\frac {23}{2}\right ] \]

18758

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )-11, y^{\prime }\left (t \right ) = -5 x \left (t \right )+4 y \left (t \right )-35] \]

18759

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-3, y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )+1] \]

18760

\[ {} [x^{\prime }\left (t \right ) = -5 x \left (t \right )+4 y \left (t \right )-35, y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )-11] \]

18761

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-2 y \left (t \right )] \]

18762

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right )] \]

18763

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )] \]

18764

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right )] \]

18765

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 8 x \left (t \right )-6 y \left (t \right )] \]

18766

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

18767

\[ {} \left [x^{\prime }\left (t \right ) = \frac {5 x \left (t \right )}{4}+\frac {3 y \left (t \right )}{4}, y^{\prime }\left (t \right ) = \frac {3 x \left (t \right )}{4}+\frac {5 y \left (t \right )}{4}\right ] \]

18768

\[ {} \left [x^{\prime }\left (t \right ) = -\frac {3 x \left (t \right )}{4}-\frac {7 y \left (t \right )}{4}, y^{\prime }\left (t \right ) = \frac {x \left (t \right )}{4}+\frac {5 y \left (t \right )}{4}\right ] \]

18769

\[ {} \left [x^{\prime }\left (t \right ) = -\frac {x \left (t \right )}{4}-\frac {3 y \left (t \right )}{4}, y^{\prime }\left (t \right ) = \frac {x \left (t \right )}{2}+y \left (t \right )\right ] \]

18770

\[ {} [x^{\prime }\left (t \right ) = 5 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )] \]

18771

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -5 x \left (t \right )+4 y \left (t \right )] \]

18772

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )+6 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right )] \]

18773

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right )] \]

18774

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )] \]

18775

\[ {} [x^{\prime }\left (t \right ) = 5 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )] \]

18776

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -5 x \left (t \right )+4 y \left (t \right )] \]

18777

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )] \]

18778

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

18779

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

18780

\[ {} \left [x^{\prime }\left (t \right ) = 2 x \left (t \right )-\frac {5 y \left (t \right )}{2}, y^{\prime }\left (t \right ) = \frac {9 x \left (t \right )}{5}-y \left (t \right )\right ] \]

18781

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )-3 y \left (t \right )] \]

18782

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -5 x \left (t \right )-y \left (t \right )] \]

18783

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

18784

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

18785

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right )] \]

18786

\[ {} [x^{\prime }\left (t \right ) = -3 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-y \left (t \right )] \]

18787

\[ {} \left [x^{\prime }\left (t \right ) = \frac {3 x \left (t \right )}{4}-2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-\frac {5 y \left (t \right )}{4}\right ] \]

18788

\[ {} \left [x^{\prime }\left (t \right ) = -\frac {4 x \left (t \right )}{5}+2 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+\frac {6 y \left (t \right )}{5}\right ] \]

18789

\[ {} [x^{\prime }\left (t \right ) = a x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+a y \left (t \right )] \]

18790

\[ {} [x^{\prime }\left (t \right ) = -5 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+a y \left (t \right )] \]

18791

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = a x \left (t \right )-2 y \left (t \right )] \]

18792

\[ {} \left [x^{\prime }\left (t \right ) = \frac {5 x \left (t \right )}{4}+\frac {3 y \left (t \right )}{4}, y^{\prime }\left (t \right ) = a x \left (t \right )+\frac {5 y \left (t \right )}{4}\right ] \]

18793

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+a y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-y \left (t \right )] \]

18794

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )+a y \left (t \right ), y^{\prime }\left (t \right ) = -6 x \left (t \right )-4 y \left (t \right )] \]

18795

\[ {} [x^{\prime }\left (t \right ) = a x \left (t \right )+10 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-4 y \left (t \right )] \]

18796

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )+a y \left (t \right ), y^{\prime }\left (t \right ) = 8 x \left (t \right )-6 y \left (t \right )] \]

18797

\[ {} \left [i^{\prime }\left (t \right ) = \frac {i \left (t \right )}{2}-\frac {v \left (t \right )}{8}, v^{\prime }\left (t \right ) = 2 i \left (t \right )-\frac {v \left (t \right )}{2}\right ] \]

18798

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

18799

\[ {} \left [x^{\prime }\left (t \right ) = \frac {5 x \left (t \right )}{4}+\frac {3 y \left (t \right )}{4}, y^{\prime }\left (t \right ) = -\frac {3 x \left (t \right )}{4}-\frac {y \left (t \right )}{4}\right ] \]

18800

\[ {} \left [x^{\prime }\left (t \right ) = -\frac {3 x \left (t \right )}{2}+y \left (t \right ), y^{\prime }\left (t \right ) = -\frac {x \left (t \right )}{4}-\frac {y \left (t \right )}{2}\right ] \]