6.223 Problems 22201 to 22300

Table 6.445: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

22201

\[ {} y^{\prime \prime \prime \prime }+x^{2} y^{\prime \prime \prime }+x y^{\prime \prime }-{\mathrm e}^{x} y^{\prime }+2 y = x^{2}+x +1 \]

22202

\[ {} y^{\prime \prime }+2 x y^{\prime }+y = 4 x y^{2} \]

22203

\[ {} y^{\prime }-2 y = x y \]

22204

\[ {} y y^{\prime }+y^{\prime \prime } = x^{2} \]

22205

\[ {} y^{\prime \prime \prime }+\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime }+y = 5 \sin \left (x \right ) \]

22206

\[ {} y^{\prime }-\frac {2 y}{x} = 0 \]

22207

\[ {} y^{\prime }-\frac {2 y}{x} = 0 \]

22208

\[ {} y^{\prime }-2 y = 0 \]

22209

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

22210

\[ {} y^{\prime \prime }-7 y^{\prime } = 0 \]

22211

\[ {} y^{\prime \prime }-5 y = 0 \]

22212

\[ {} 5 y+4 y^{\prime }+y^{\prime \prime } = 0 \]

22213

\[ {} 4 y+y^{\prime \prime } = 0 \]

22214

\[ {} y^{\prime \prime }-3 y^{\prime }+4 y = 0 \]

22215

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

22216

\[ {} y^{\prime \prime } = 0 \]

22217

\[ {} -y+y^{\prime \prime } = 0 \]

22218

\[ {} y^{\prime \prime }-y^{\prime }-30 y = 0 \]

22219

\[ {} y-2 y^{\prime }+y^{\prime \prime } = 0 \]

22220

\[ {} y^{\prime \prime }+y = 0 \]

22221

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

22222

\[ {} y^{\prime \prime }-7 y = 0 \]

22223

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

22224

\[ {} 3 y+2 y^{\prime }+y^{\prime \prime } = 0 \]

22225

\[ {} y^{\prime \prime }-3 y^{\prime }-5 y = 0 \]

22226

\[ {} y^{\prime \prime }+y^{\prime }+\frac {y}{4} = 0 \]

22227

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

22228

\[ {} y^{\prime \prime \prime \prime }-9 y^{\prime \prime }+20 y = 0 \]

22229

\[ {} y^{\prime }-5 y = 0 \]

22230

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+2 y^{\prime }+36 y = 0 \]

22231

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+7 y^{\prime \prime }-4 y^{\prime }+6 y = 0 \]

22232

\[ {} y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+24 y^{\prime \prime }+32 y^{\prime }+16 y = 0 \]

22233

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime }-y = 0 \]

22234

\[ {} y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+32 y^{\prime \prime }-64 y^{\prime }+64 y = 0 \]

22235

\[ {} y^{\left (6\right )}-5 y^{\prime \prime \prime \prime }+16 y^{\prime \prime \prime }-16 y^{\prime }-32 y = 0 \]

22236

\[ {} 2 y-y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

22237

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \]

22238

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

22239

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0 \]

22240

\[ {} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

22241

\[ {} -y-2 y^{\prime }+2 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

22242

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+16 y^{\prime }+32 y = 0 \]

22243

\[ {} y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime } = 0 \]

22244

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

22245

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 4 x^{2} \]

22246

\[ {} y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \]

22247

\[ {} y^{\prime \prime }-y^{\prime }-2 y = \sin \left (2 x \right ) \]

22248

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 2 x \,{\mathrm e}^{-x} \]

22249

\[ {} y^{\prime \prime } = 9 x^{2}+2 x -1 \]

22250

\[ {} y^{\prime }-5 y = 2 \,{\mathrm e}^{x} \]

22251

\[ {} y^{\prime }-5 y = \left (x -1\right ) \sin \left (x \right )+\left (1+x \right ) \cos \left (x \right ) \]

22252

\[ {} y^{\prime }-5 y = 3 \,{\mathrm e}^{x}-2 x +1 \]

22253

\[ {} y^{\prime }-5 y = x^{2} {\mathrm e}^{x}-x \,{\mathrm e}^{5 x} \]

22254

\[ {} y-2 y^{\prime }+y^{\prime \prime } = x^{2}-1 \]

22255

\[ {} y-2 y^{\prime }+y^{\prime \prime } = 3 \,{\mathrm e}^{2 x} \]

22256

\[ {} y-2 y^{\prime }+y^{\prime \prime } = 4 \cos \left (x \right ) \]

22257

\[ {} y-2 y^{\prime }+y^{\prime \prime } = 3 \,{\mathrm e}^{x} \]

22258

\[ {} y-2 y^{\prime }+y^{\prime \prime } = x \,{\mathrm e}^{x} \]

22259

\[ {} y^{\prime }-y = {\mathrm e}^{x} \]

22260

\[ {} y^{\prime }-y = x \,{\mathrm e}^{2 x}+1 \]

22261

\[ {} y^{\prime }-y = \sin \left (x \right )+\cos \left (2 x \right ) \]

22262

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x}+1 \]

22263

\[ {} y^{\prime \prime \prime }+y = \sec \left (x \right ) \]

22264

\[ {} y-2 y^{\prime }+y^{\prime \prime } = \frac {{\mathrm e}^{x}}{x} \]

22265

\[ {} y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \]

22266

\[ {} y^{\prime }+\frac {4 y}{x} = x^{4} \]

22267

\[ {} y^{\prime \prime \prime \prime } = 5 x \]

22268

\[ {} y-2 y^{\prime }+y^{\prime \prime } = \frac {{\mathrm e}^{x}}{x^{5}} \]

22269

\[ {} y^{\prime \prime }+y = \sec \left (x \right ) \]

22270

\[ {} 4 y+y^{\prime \prime } = \sin \left (2 x \right )^{2} \]

22271

\[ {} y^{\prime \prime }-\frac {y}{x} = x^{2} \]

22272

\[ {} y^{\prime \prime }+2 x y = x \]

22273

\[ {} y^{\prime \prime \prime } = 12 \]

22274

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 4 x^{2} \]

22275

\[ {} y-2 y^{\prime }+y^{\prime \prime } = \frac {{\mathrm e}^{x}}{x} \]

22276

\[ {} y^{\prime \prime }+4 y^{\prime }+8 y = \sin \left (x \right ) \]

22277

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

22278

\[ {} y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \]

22279

\[ {} y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \]

22280

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

22281

\[ {} y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \]

22282

\[ {} y^{\prime \prime }+y = x \]

22283

\[ {} 4 y+y^{\prime \prime } = \sin \left (2 x \right )^{2} \]

22284

\[ {} y^{\prime \prime }+y = 0 \]

22285

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = \sin \left (2 x \right )+\cos \left (2 x \right ) \]

22286

\[ {} \left (x^{2}-4\right ) y^{\prime \prime }+y = 0 \]

22287

\[ {} \left (x^{2}-4\right ) y^{\prime \prime }+y = 0 \]

22288

\[ {} 2 x^{2} y^{\prime \prime }+7 x \left (1+x \right ) y^{\prime }-3 y = 0 \]

22289

\[ {} x^{2} y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

22290

\[ {} y^{\prime \prime }+3 y^{\prime }+2 x y = 0 \]

22291

\[ {} \left (x -2\right ) y^{\prime \prime }+3 \left (x^{2}-3 x +2\right ) y^{\prime }+\left (x -2\right )^{2} x y = 0 \]

22292

\[ {} \left (1+x \right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+x y = 0 \]

22293

\[ {} \left (1+x \right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+x y = 0 \]

22294

\[ {} x^{3} y^{\prime \prime }+y = 0 \]

22295

\[ {} x^{3} y^{\prime \prime }+x y = 0 \]

22296

\[ {} {\mathrm e}^{x} y^{\prime \prime }+y^{\prime } \sin \left (x \right )+x y = 0 \]

22297

\[ {} \left (1+x \right )^{3} y^{\prime \prime }+\left (x^{2}-1\right ) \left (1+x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

22298

\[ {} x^{4} \left (x^{2}-4\right ) y^{\prime \prime }+y^{\prime } \left (1+x \right )+\left (x^{2}-3 x +2\right ) y = 0 \]

22299

\[ {} 2 y-x y^{\prime }+y^{\prime \prime } = 0 \]

22300

\[ {} y^{\prime \prime }+y = 0 \]