6.222 Problems 22101 to 22200

Table 6.443: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

22101

\[ {} y^{\prime } = 2 \sqrt {{| y|}} \]

22102

\[ {} y^{\prime } = x y \]

22103

\[ {} y^{\prime } = x y+1 \]

22104

\[ {} y^{\prime } = \frac {x^{2}}{y^{2}} \]

22105

\[ {} y^{\prime } = -\frac {2 y}{x} \]

22106

\[ {} y^{\prime } = \frac {x y^{2}}{x^{2} y+y^{3}} \]

22107

\[ {} x -y^{2} y^{\prime } = 0 \]

22108

\[ {} y^{\prime } = y^{2} x^{3} \]

22109

\[ {} y^{\prime } = 5 y \]

22110

\[ {} y^{\prime } = \frac {1+x}{1+y^{4}} \]

22111

\[ {} {\mathrm e}^{x}-y y^{\prime } = 0 \]

22112

\[ {} x \cos \left (x \right )+\left (1-6 y^{5}\right ) y^{\prime } = 0 \]

22113

\[ {} y y^{\prime }+x = 0 \]

22114

\[ {} \frac {1}{x}-\frac {y^{\prime }}{y} = 0 \]

22115

\[ {} \frac {1}{x}+y^{\prime } = 0 \]

22116

\[ {} x +\frac {y^{\prime }}{y} = 0 \]

22117

\[ {} x^{2}+1+\left (y^{2}+y\right ) y^{\prime } = 0 \]

22118

\[ {} \sin \left (x \right )+y y^{\prime } = 0 \]

22119

\[ {} x^{2}+1+\frac {y^{\prime }}{y} = 0 \]

22120

\[ {} x \,{\mathrm e}^{x}+\left (y^{5}-1\right ) y^{\prime } = 0 \]

22121

\[ {} y^{\prime } = \frac {y}{x} \]

22122

\[ {} y^{\prime } = \frac {x \,{\mathrm e}^{x}}{2 y} \]

22123

\[ {} y^{\prime } = \frac {x^{2} y-y}{1+y} \]

22124

\[ {} y^{\prime } = \frac {x +y}{x} \]

22125

\[ {} y^{\prime } = \frac {2 y^{4}+x^{4}}{x y^{3}} \]

22126

\[ {} y^{\prime } = \frac {2 x y}{x^{2}-y^{2}} \]

22127

\[ {} y^{\prime } = x y \]

22128

\[ {} y^{\prime } = \frac {2 x y \,{\mathrm e}^{\frac {x^{2}}{y^{2}}}}{y^{2}+y^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}+2 x^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}} \]

22129

\[ {} y^{\prime } = \frac {2 x y \,{\mathrm e}^{\frac {x^{2}}{y^{2}}}}{y^{2}+y^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}+2 x^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}} \]

22130

\[ {} y^{\prime } = \frac {2 y+x}{x} \]

22131

\[ {} y^{\prime } = \frac {x^{2}+2 y^{2}}{x y} \]

22132

\[ {} y^{\prime } = \frac {y^{2}+2 x}{x y} \]

22133

\[ {} y^{\prime } = \frac {x^{2}+y^{2}}{x y} \]

22134

\[ {} y^{\prime } = \frac {2 x y}{-x^{2}+y^{2}} \]

22135

\[ {} y^{\prime } = \frac {y}{x +\sqrt {x y}} \]

22136

\[ {} y^{\prime } = \frac {y^{2}}{x y+\left (x y^{2}\right )^{{1}/{3}}} \]

22137

\[ {} y^{\prime } = \frac {x^{4}+3 x^{2} y^{2}+y^{4}}{x^{3} y} \]

22138

\[ {} \left (x^{2}+1\right ) y^{\prime }+2 x y = 0 \]

22139

\[ {} x +\sin \left (y\right )+\left (x \cos \left (y\right )-2 y\right ) y^{\prime } = 0 \]

22140

\[ {} x y+x^{2}-y^{\prime } = 0 \]

22141

\[ {} y^{\prime } = \frac {2+y \,{\mathrm e}^{x y}}{2 y-x \,{\mathrm e}^{x y}} \]

22142

\[ {} y^{\prime } = -\frac {2 x y}{x^{2}+1} \]

22143

\[ {} 2 x y+x +\left (y+x^{2}\right ) y^{\prime } = 0 \]

22144

\[ {} y+2 x y^{3}+\left (1+3 x^{2} y^{2}+x \right ) y^{\prime } = 0 \]

22145

\[ {} y \,{\mathrm e}^{x y}+x \,{\mathrm e}^{x y} y^{\prime } = 0 \]

22146

\[ {} x \,{\mathrm e}^{x y}+y \,{\mathrm e}^{x y} y^{\prime } = 0 \]

22147

\[ {} 3 x^{2} y^{2}+\left (2 x^{3} y+4 y^{3}\right ) y^{\prime } = 0 \]

22148

\[ {} x y^{\prime }+y = 0 \]

22149

\[ {} \left (x +y\right ) y^{\prime }+x -y = 0 \]

22150

\[ {} \sin \left (x \right ) y+y \cos \left (x \right ) x +\left (x \sin \left (x \right )+1\right ) y^{\prime } = 0 \]

22151

\[ {} y-x y^{\prime } = 0 \]

22152

\[ {} x y^{\prime }-y+y^{2} = 0 \]

22153

\[ {} y-x y^{2}+\left (x^{2} y^{2}+x \right ) y^{\prime } = 0 \]

22154

\[ {} y^{\prime } = \frac {3 y x^{2}}{x^{3}+2 y^{4}} \]

22155

\[ {} y^{\prime } = 2 x y-x \]

22156

\[ {} y^{\prime } = \frac {x y^{2}-y}{x} \]

22157

\[ {} y^{2}+y y^{\prime } x = 0 \]

22158

\[ {} y+1-x y^{\prime } = 0 \]

22159

\[ {} y+\left (1-x \right ) y^{\prime } = 0 \]

22160

\[ {} x^{2}+y+y^{2}-x y^{\prime } = 0 \]

22161

\[ {} y+x^{3} y^{3}+x y^{\prime } = 0 \]

22162

\[ {} y+x^{4} y^{2}+x y^{\prime } = 0 \]

22163

\[ {} 3 x^{2} y-x^{2}+y^{\prime } = 0 \]

22164

\[ {} 1-2 y y^{\prime } x = 0 \]

22165

\[ {} 2 x y+y^{2} y^{\prime } = 0 \]

22166

\[ {} 3 x y^{\prime }+y = 0 \]

22167

\[ {} 2 x y^{2}+\frac {x}{y^{2}}+4 x^{2} y y^{\prime } = 0 \]

22168

\[ {} x y^{2}+\left (x^{2} y^{2}+x^{2} y\right ) y^{\prime } = 0 \]

22169

\[ {} x y^{2}+x^{2} y y^{\prime } = 0 \]

22170

\[ {} y+x^{3}+x y^{2}-x y^{\prime } = 0 \]

22171

\[ {} y^{2} x^{3}-y+\left (x^{2} y^{4}-x \right ) y^{\prime } = 0 \]

22172

\[ {} 3 x^{2} y^{2}+\left (2 x^{3} y+y^{4} x^{3}\right ) y^{\prime } = 0 \]

22173

\[ {} y^{\prime }-3 y = 6 \]

22174

\[ {} y^{\prime }-2 x y = x \]

22175

\[ {} y^{\prime }+\frac {4 y}{x} = x^{4} \]

22176

\[ {} y^{\prime }+y = \sin \left (x \right ) \]

22177

\[ {} y^{\prime }-5 y = 0 \]

22178

\[ {} y^{\prime }+y = \sin \left (x \right ) \]

22179

\[ {} y^{\prime }+x y = x y^{2} \]

22180

\[ {} y^{\prime }-\frac {3 y}{x} = x^{4} y^{{1}/{3}} \]

22181

\[ {} y^{\prime }-7 y = {\mathrm e}^{x} \]

22182

\[ {} y^{\prime }-7 y = 14 x \]

22183

\[ {} y^{\prime }-7 y = \sin \left (2 x \right ) \]

22184

\[ {} y^{\prime }+x^{2} y = x^{2} \]

22185

\[ {} y^{\prime }+\frac {2 y}{x} = x \]

22186

\[ {} y^{\prime }+6 x y = 0 \]

22187

\[ {} y^{\prime }-\frac {3 y}{x^{2}} = \frac {1}{x^{2}} \]

22188

\[ {} y^{\prime } = \cos \left (x \right ) \]

22189

\[ {} y^{\prime }+2 x y = 2 x^{3} \]

22190

\[ {} y^{\prime }+y = y^{2} \]

22191

\[ {} y^{\prime }+x y = 6 x \sqrt {y} \]

22192

\[ {} y^{\prime }+\frac {2 y}{x} = -x^{9} y^{5} \]

22193

\[ {} 2 x y^{\prime \prime }+x^{2} y^{\prime }-\sin \left (x \right ) y = 0 \]

22194

\[ {} y y^{\prime \prime \prime }+x y^{\prime }+y = x^{2} \]

22195

\[ {} -y+y^{\prime \prime } = 0 \]

22196

\[ {} 3 y^{\prime }+x y = {\mathrm e}^{-x^{2}} \]

22197

\[ {} y^{\prime \prime }+{\mathrm e}^{x} y^{\prime }+\left (1+x \right ) y = 0 \]

22198

\[ {} y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

22199

\[ {} y^{\prime \prime \prime }-y = x \]

22200

\[ {} y^{\prime }+5 y = 0 \]