| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime } = 2 \sqrt {{| y|}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x y+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x^{2}}{y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -\frac {2 y}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x y^{2}}{x^{2} y+y^{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x -y^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2} x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 5 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1+x}{1+y^{4}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {\mathrm e}^{x}-y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \cos \left (x \right )+\left (1-6 y^{5}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {1}{x}-\frac {y^{\prime }}{y} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {1}{x}+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +\frac {y^{\prime }}{y} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+1+\left (y^{2}+y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (x \right )+y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+1+\frac {y^{\prime }}{y} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \,{\mathrm e}^{x}+\left (y^{5}-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x \,{\mathrm e}^{x}}{2 y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x^{2} y-y}{1+y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x +y}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 y^{4}+x^{4}}{x y^{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 x y}{x^{2}-y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 x y \,{\mathrm e}^{\frac {x^{2}}{y^{2}}}}{y^{2}+y^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}+2 x^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 x y \,{\mathrm e}^{\frac {x^{2}}{y^{2}}}}{y^{2}+y^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}+2 x^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 y+x}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x^{2}+2 y^{2}}{x y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y^{2}+2 x}{x y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x^{2}+y^{2}}{x y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 x y}{-x^{2}+y^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {y}{x +\sqrt {x y}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {y^{2}}{x y+\left (x y^{2}\right )^{{1}/{3}}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {x^{4}+3 x^{2} y^{2}+y^{4}}{x^{3} y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime }+2 x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +\sin \left (y\right )+\left (x \cos \left (y\right )-2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y+x^{2}-y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2+y \,{\mathrm e}^{x y}}{2 y-x \,{\mathrm e}^{x y}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = -\frac {2 x y}{x^{2}+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y+x +\left (y+x^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 x y^{3}+\left (1+3 x^{2} y^{2}+x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \,{\mathrm e}^{x y}+x \,{\mathrm e}^{x y} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \,{\mathrm e}^{x y}+y \,{\mathrm e}^{x y} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x^{2} y^{2}+\left (2 x^{3} y+4 y^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +y\right ) y^{\prime }+x -y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (x \right ) y+y \cos \left (x \right ) x +\left (x \sin \left (x \right )+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y+y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-x y^{2}+\left (x^{2} y^{2}+x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {3 y x^{2}}{x^{3}+2 y^{4}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 x y-x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x y^{2}-y}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2}+y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+1-x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+\left (1-x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+y+y^{2}-x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+x^{3} y^{3}+x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+x^{4} y^{2}+x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x^{2} y-x^{2}+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1-2 y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y+y^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y^{2}+\frac {x}{y^{2}}+4 x^{2} y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{2}+\left (x^{2} y^{2}+x^{2} y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{2}+x^{2} y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+x^{3}+x y^{2}-x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2} x^{3}-y+\left (x^{2} y^{4}-x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 x^{2} y^{2}+\left (2 x^{3} y+y^{4} x^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-3 y = 6
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-2 x y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {4 y}{x} = x^{4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+x y = x y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {3 y}{x} = x^{4} y^{{1}/{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-7 y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-7 y = 14 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-7 y = \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+x^{2} y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {2 y}{x} = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+6 x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {3 y}{x^{2}} = \frac {1}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 x y = 2 x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+x y = 6 x \sqrt {y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {2 y}{x} = -x^{9} y^{5}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y^{\prime \prime }+x^{2} y^{\prime }-\sin \left (x \right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime \prime \prime }+x y^{\prime }+y = x^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} -y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{\prime }+x y = {\mathrm e}^{-x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+{\mathrm e}^{x} y^{\prime }+\left (1+x \right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime }-y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|