5.1.1 Problems 1 to 100

Table 5.1: Problems not solved by Mathematica

#

ODE

Mathematica

Maple

Sympy

31

\[ {} y^{\prime } = \sqrt {x -y} \]

145

\[ {} \frac {2 x}{y}-\frac {3 y^{2}}{x^{4}}+\left (\frac {2 y}{x^{3}}-\frac {x^{2}}{y^{2}}+\frac {1}{\sqrt {y}}\right ) y^{\prime } = 0 \]

204

\[ {} 9 \sqrt {x}\, y^{{4}/{3}}-12 x^{{1}/{5}} y^{{3}/{2}}+\left (8 x^{{3}/{2}} y^{{1}/{3}}-15 x^{{6}/{5}} \sqrt {y}\right ) y^{\prime } = 0 \]

232

\[ {} y y^{\prime \prime } = 6 x^{4} \]

604

\[ {} [x^{\prime }\left (t \right ) = t x \left (t \right )-{\mathrm e}^{t} y \left (t \right )+\cos \left (t \right ), y^{\prime }\left (t \right ) = {\mathrm e}^{-t} x \left (t \right )+t^{2} y \left (t \right )-\sin \left (t \right )] \]

608

\[ {} [x^{\prime }\left (t \right ) = t x \left (t \right )-y \left (t \right )+{\mathrm e}^{t} z \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+t^{2} y \left (t \right )-z \left (t \right ), z^{\prime }\left (t \right ) = {\mathrm e}^{-t} x \left (t \right )+3 t y \left (t \right )+t^{3} z \left (t \right )] \]

769

\[ {} \frac {2 x}{y}-\frac {3 y^{2}}{x^{4}}+\left (\frac {2 y}{x^{3}}-\frac {x^{2}}{y^{2}}+\frac {1}{\sqrt {y}}\right ) y^{\prime } = 0 \]

783

\[ {} y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{4} \]

796

\[ {} 9 \sqrt {x}\, y^{{4}/{3}}-12 x^{{1}/{5}} y^{{3}/{2}}+\left (8 x^{{3}/{2}} y^{{1}/{3}}-15 x^{{6}/{5}} \sqrt {y}\right ) y^{\prime } = 0 \]

1135

\[ {} y^{\prime } = \frac {-{\mathrm e}^{-x}+x}{x +{\mathrm e}^{y}} \]

1200

\[ {} {\mathrm e}^{x} \sin \left (y\right )+3 y-\left (3 x -{\mathrm e}^{x} \sin \left (y\right )\right ) y^{\prime } = 0 \]

1203

\[ {} x \ln \left (x \right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0 \]

1360

\[ {} u^{\prime \prime }+u^{\prime }+\frac {u^{3}}{5} = \cos \left (t \right ) \]

1463

\[ {} t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y = 0 \]

1535

\[ {} y^{\prime } = {| y|}+1 \]

1608

\[ {} y^{\prime } = \frac {x^{2}+y^{2}}{\sin \left (x \right )} \]

1609

\[ {} y^{\prime } = \frac {y+{\mathrm e}^{x}}{x^{2}+y^{2}} \]

1611

\[ {} y^{\prime } = \frac {x^{2}+y^{2}}{\ln \left (x y\right )} \]

1612

\[ {} y^{\prime } = \left (x^{2}+y^{2}\right ) y^{{1}/{3}} \]

1614

\[ {} y^{\prime } = \ln \left (x^{2}+y^{2}+1\right ) \]

1616

\[ {} y^{\prime } = \sqrt {x^{2}+y^{2}} \]

1618

\[ {} y^{\prime } = \left (x^{2}+y^{2}\right )^{2} \]

1689

\[ {} 2 x^{2}+8 x y+y^{2}+\left (2 x^{2}+\frac {x y^{3}}{3}\right ) y^{\prime } = 0 \]

1691

\[ {} y \sin \left (x y\right )+x y^{2} \cos \left (x y\right )+\left (x \sin \left (x y\right )+x y^{2} \cos \left (x y\right )\right ) y^{\prime } = 0 \]

1696

\[ {} 3 x^{2} \cos \left (x \right ) y-x^{3} y \sin \left (x \right )+4 x +\left (8 y-x^{4} \sin \left (x \right ) y\right ) y^{\prime } = 0 \]

1755

\[ {} \left (2 x +1\right ) y^{\prime \prime }-2 \left (2 x^{2}-1\right ) y^{\prime }-4 \left (1+x \right ) y = 0 \]

2347

\[ {} y^{\prime } = y^{2}+\cos \left (t^{2}\right ) \]

2348

\[ {} y^{\prime } = 1+y+y^{2} \cos \left (t \right ) \]

2350

\[ {} y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2351

\[ {} y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2352

\[ {} y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2353

\[ {} y^{\prime } = y+{\mathrm e}^{-y}+{\mathrm e}^{-t} \]

2354

\[ {} y^{\prime } = y^{3}+{\mathrm e}^{-5 t} \]

2356

\[ {} y^{\prime } = \left (4 y+{\mathrm e}^{-t^{2}}\right ) {\mathrm e}^{2 y} \]

2357

\[ {} y^{\prime } = {\mathrm e}^{-t}+\ln \left (1+y^{2}\right ) \]

2496

\[ {} \sqrt {1+y^{2}}\, y^{\prime } = \frac {t y^{3}}{\sqrt {t^{2}+1}} \]

2515

\[ {} 2 t \cos \left (y\right )+3 t^{2} y+\left (2 t^{2}+2 y\right ) y^{\prime } = 0 \]

2523

\[ {} y^{\prime } = 1+y+y^{2} \cos \left (t \right ) \]

2525

\[ {} y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2526

\[ {} y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2527

\[ {} y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2528

\[ {} y^{\prime } = y+{\mathrm e}^{-y}+{\mathrm e}^{-t} \]

2529

\[ {} y^{\prime } = y^{3}+{\mathrm e}^{-5 t} \]

2531

\[ {} y^{\prime } = \left (4 y+{\mathrm e}^{-t^{2}}\right ) {\mathrm e}^{2 y} \]

2532

\[ {} y^{\prime } = {\mathrm e}^{-t}+\ln \left (1+y^{2}\right ) \]

2536

\[ {} y^{\prime } = t y^{a} \]

2538

\[ {} y^{\prime } = y+{\mathrm e}^{-y}+2 t \]

2540

\[ {} y^{\prime } = \frac {t^{2}+y^{2}}{1+t +y^{2}} \]

2592

\[ {} y^{\prime \prime }+p \left (t \right ) y^{\prime }+q \left (t \right ) y = t +1 \]

2789

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-x \left (t \right )^{2}-2 x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )-2 y \left (t \right )^{2}-3 x \left (t \right ) y \left (t \right )] \]

2790

\[ {} [x^{\prime }\left (t \right ) = -b x \left (t \right ) y \left (t \right )+m, y^{\prime }\left (t \right ) = b x \left (t \right ) y \left (t \right )-g y \left (t \right )] \]

2795

\[ {} [x^{\prime }\left (t \right ) = -1-y \left (t \right )-{\mathrm e}^{x \left (t \right )}, y^{\prime }\left (t \right ) = x \left (t \right )^{2}+y \left (t \right ) \left ({\mathrm e}^{x \left (t \right )}-1\right ), z^{\prime }\left (t \right ) = x \left (t \right )+\sin \left (z \left (t \right )\right )] \]

2812

\[ {} \left [x_{1}^{\prime }\left (t \right ) = x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -\frac {\left (x_{1} \left (t \right )^{2}+\sqrt {x_{1} \left (t \right )^{2}+4 x_{2} \left (t \right )^{2}}\right ) x_{1} \left (t \right )}{2}\right ] \]

2814

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-x \left (t \right )^{3}-x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )-y \left (t \right )^{5}-y \left (t \right ) x \left (t \right )^{4}] \]

2815

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )^{2}+y \left (t \right )^{2}+1, y^{\prime }\left (t \right ) = x \left (t \right )^{2}-y \left (t \right )^{2}] \]

2817

\[ {} [x^{\prime }\left (t \right ) = 6 x \left (t \right )-6 x \left (t \right )^{2}-2 x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = 4 y \left (t \right )-4 y \left (t \right )^{2}-2 x \left (t \right ) y \left (t \right )] \]

2818

\[ {} [x^{\prime }\left (t \right ) = \tan \left (x \left (t \right )+y \left (t \right )\right ), y^{\prime }\left (t \right ) = x \left (t \right )+x \left (t \right )^{3}] \]

2912

\[ {} 2 x +y+\left (4 x +2 y+1\right ) y^{\prime } = 0 \]

2924

\[ {} x y^{2}+2 y+\left (2 y^{3}-x^{2} y+2 x \right ) y^{\prime } = 0 \]

2956

\[ {} y-x^{2} \sqrt {x^{2}-y^{2}}-x y^{\prime } = 0 \]

2957

\[ {} y \left (x +y^{2}\right )+x \left (x -y^{2}\right ) y^{\prime } = 0 \]

3002

\[ {} 1+x y \left (x y^{2}+1\right ) y^{\prime } = 0 \]

3054

\[ {} y^{2}+\left (x^{3}-2 x y\right ) y^{\prime } = 0 \]

3056

\[ {} y^{3}+2 x^{2} y+\left (-3 x^{3}-2 x y^{2}\right ) y^{\prime } = 0 \]

3275

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \cos \left (x \right ) \]

3278

\[ {} y y^{\prime \prime } = y^{3}+{y^{\prime }}^{2} \]

3279

\[ {} \left (1+{y^{\prime }}^{2}\right )^{2} = y^{2} y^{\prime \prime } \]

3287

\[ {} 1+\left (2 y-x^{2}\right ) {y^{\prime }}^{2}-2 y {y^{\prime }}^{2} x^{2} = 0 \]

3290

\[ {} x y {y^{\prime }}^{2}+\left (x y-1\right ) y^{\prime } = y \]

3321

\[ {} 3 {y^{\prime }}^{4} x = {y^{\prime }}^{3} y+1 \]

3678

\[ {} y^{\prime }+p \left (x \right ) y+q \left (x \right ) y^{2} = r \left (x \right ) \]

3684

\[ {} y \,{\mathrm e}^{x y}+\left (2 y-x \,{\mathrm e}^{x y}\right ) y^{\prime } = 0 \]

3892

\[ {} \left [x_{1}^{\prime }\left (t \right ) = t \cot \left (t^{2}\right ) x_{1} \left (t \right )+\frac {t \cos \left (t^{2}\right ) x_{3} \left (t \right )}{2}, x_{2}^{\prime }\left (t \right ) = \frac {x_{2} \left (t \right )}{t}-x_{3} \left (t \right )+2-t \sin \left (t \right ), x_{3}^{\prime }\left (t \right ) = \csc \left (t^{2}\right ) x_{1} \left (t \right )+x_{2} \left (t \right )-x_{3} \left (t \right )+1-\cos \left (t \right ) t\right ] \]

4079

\[ {} y^{2} \left (x^{2}+1\right )+y+\left (2 x y+1\right ) y^{\prime } = 0 \]

4111

\[ {} y y^{\prime } x = \left (1+x \right ) \left (1+y\right ) \]

4253

\[ {} 2 y^{2}-4 x +5 = \left (4-2 y+4 x y\right ) y^{\prime } \]

4298

\[ {} \cos \left (y\right )-x \sin \left (y\right ) y^{\prime } = \sec \left (x \right )^{2} \]

4354

\[ {} x^{2}+y^{3}+y+\left (x^{3}+y^{2}-x \right ) y^{\prime } = 0 \]

4390

\[ {} {y^{\prime }}^{3}+y^{2} = y y^{\prime } x \]

4392

\[ {} y = x y^{\prime }-x^{2} {y^{\prime }}^{3} \]

4397

\[ {} 5 y+{y^{\prime }}^{2} = x \left (x +y^{\prime }\right ) \]

4434

\[ {} 2 {y^{\prime }}^{3}-3 {y^{\prime }}^{2}+x = y \]

4654

\[ {} y^{\prime }+f \left (x \right )^{2} = f^{\prime }\left (x \right )+y^{2} \]

4674

\[ {} y^{\prime } = f \left (x \right )+a y+b y^{2} \]

4676

\[ {} y^{\prime } = f \left (x \right )+g \left (x \right ) y+a y^{2} \]

4689

\[ {} y^{\prime } = f \left (x \right )+g \left (x \right ) y+h \left (x \right ) y^{2} \]

4706

\[ {} y^{\prime } = f \left (x \right )+g \left (x \right ) y+h \left (x \right ) y^{n} \]

4811

\[ {} x y^{\prime } = y+a \sqrt {y^{2}+b^{2} x^{2}} \]

4821

\[ {} x y^{\prime } = \sin \left (x -y\right ) \]

5011

\[ {} x^{k} y^{\prime } = a \,x^{m}+b y^{n} \]

5039

\[ {} y y^{\prime }+x^{3}+y = 0 \]

5042

\[ {} y y^{\prime }+f \left (x \right ) = g \left (x \right ) y \]

5144

\[ {} x \left (a +y\right ) y^{\prime }+b x +c y = 0 \]

5151

\[ {} \left (a +x \left (x +y\right )\right ) y^{\prime } = b \left (x +y\right ) y \]

5378

\[ {} {y^{\prime }}^{2} = f \left (x \right )^{2} \left (y-u \left (x \right )\right )^{2} \left (y-a \right ) \left (y-b \right ) \]

5473

\[ {} x {y^{\prime }}^{2}-2 y y^{\prime }+a x = 0 \]

5515

\[ {} x^{2} {y^{\prime }}^{2}+x \left (x^{2}+x y-2 y\right ) y^{\prime }+\left (1-x \right ) \left (-y+x^{2}\right ) y = 0 \]

5529

\[ {} a \,x^{2} {y^{\prime }}^{2}-2 a x y y^{\prime }+a \left (1-a \right ) x^{2}+y^{2} = 0 \]

5585

\[ {} \left (a^{2}-2 a x y+y^{2}\right ) {y^{\prime }}^{2}+2 a y y^{\prime }+y^{2} = 0 \]

5621

\[ {} {y^{\prime }}^{3}-x y^{\prime }+a y = 0 \]