| # | ODE | Mathematica | Maple | Sympy |
| \[
{} {y^{\prime }}^{3}+2 x y^{\prime }-y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}-2 x y^{\prime }-y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}+{\mathrm e}^{3 x -2 y} \left (y^{\prime }-1\right ) = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}+{\mathrm e}^{-2 y} \left ({\mathrm e}^{2 x}+{\mathrm e}^{3 x}\right ) y^{\prime }-{\mathrm e}^{3 x -2 y} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}+a_{0} {y^{\prime }}^{2}+a_{1} y^{\prime }+a_{2} +a_{3} y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 {y^{\prime }}^{3}+x y^{\prime }-2 y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 {y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0
\]
|
✗ |
✓ |
✓ |
|
| \[
{} 8 {y^{\prime }}^{3}+12 {y^{\prime }}^{2} = 27 x +27 y
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x {y^{\prime }}^{3}-3 y {y^{\prime }}^{2} x^{2}+x \left (x^{5}+3 y^{2}\right ) y^{\prime }-2 x^{5} y-y^{3} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{6} {y^{\prime }}^{3}-x y^{\prime }-y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{2} {y^{\prime }}^{3}-x y^{\prime }+y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{3} {y^{\prime }}^{3}-\left (1-3 x \right ) y^{2} {y^{\prime }}^{2}+3 x^{2} y y^{\prime }+x^{3}-y^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{4}+x y^{\prime }-3 y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{2} \left ({y^{\prime }}^{6}+3 y^{4}+3 y^{2}+1\right ) = a^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \sqrt {\left (x^{2} a +y^{2}\right ) \left (1+{y^{\prime }}^{2}\right )}-y y^{\prime }-a x = 0
\]
|
✗ |
✓ |
✓ |
|
| \[
{} \left (a +b \cos \left (2 x \right )+k \cos \left (4 x \right )\right ) y+y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (\operatorname {a0} +\operatorname {a1} \cos \left (x \right )^{2}+\operatorname {a2} \csc \left (x \right )^{2}\right ) y+y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} a \left (1+k \right ) x^{k -1} y+a \,x^{k} y^{\prime }+y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (b +k^{2} \cos \left (x \right )^{2}\right ) y+a \cot \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} c y+a \cot \left (b x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (\operatorname {a0} -\operatorname {a2} \operatorname {csch}\left (x \right )^{2}+4 \operatorname {a1} \sinh \left (x \right )^{2}\right ) y+\coth \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (\operatorname {a0} +4 \operatorname {a1} \cosh \left (x \right )^{2}-\operatorname {a2} \operatorname {sech}\left (x \right )^{2}\right ) y+\tanh \left (x \right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (\operatorname {c1} \,x^{2}+\operatorname {b1} x +\operatorname {a1} \right ) y+a y^{\prime }+x y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y+4 \coth \left (x \right ) y^{\prime }+4 x y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y \left (\operatorname {a2} +\operatorname {b2} \,x^{k}+\operatorname {c2} \,x^{2 k}+\left (-1+\operatorname {a1} +\operatorname {b1} \,x^{k}\right ) f \left (x \right )+f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+x \left (\operatorname {a1} +\operatorname {b1} \,x^{k}+2 f \left (x \right )\right ) y^{\prime }+x^{2} y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (b x +a \right ) y+2 \left (1-2 x \right ) y^{\prime }+4 \left (1-x \right ) x y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (c \,x^{2}+b x +a \right ) y+2 \left (1-2 x \right ) y^{\prime }+4 \left (1-x \right ) x y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (k^{2} x +b \right ) y+2 \left (a x +1\right ) y^{\prime }+4 \left (1-x \right ) x y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (c \,x^{2}+b x +a \right ) y+x^{2} y^{\prime }+x^{3} y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y+x \left (1+x \right ) y^{\prime }+x \left (x^{2}+1\right ) y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (\operatorname {b1} \,x^{2}+\operatorname {b0} \right ) y+\left (\operatorname {a2} \,x^{2}+\operatorname {a1} x +\operatorname {a0} \right ) y^{\prime }+4 \left (1-x \right ) x \left (-a x +1\right ) y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (c \,x^{4}+b \,x^{2}+a \right ) y+x^{3} y^{\prime }+x^{4} y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} -a^{2} y-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} b y+a x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y b^{2}+x \left (a^{2}+2 x^{2}\right ) y^{\prime }+x^{2} \left (a^{2}+x^{2}\right )^{2} y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} -\left (\operatorname {a4} \,x^{4}+\operatorname {a2} \,x^{2}+\operatorname {a0} \right ) y+2 x \left (a^{2}+2 x^{2}\right ) y^{\prime }+\left (a^{2}+x^{2}\right )^{2} y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (\operatorname {a4} \,x^{4}+\operatorname {a2} \,x^{2}+\operatorname {a0} \right ) y-2 x \left (a^{2}-x^{2}\right ) y^{\prime }+\left (a^{2}-x^{2}\right )^{2} y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y+x \left (\operatorname {b0} \,x^{2}+\operatorname {a0} \right ) y^{\prime }+\left (a^{2}+x^{2}\right )^{2} \left (b^{2}+x^{2}\right ) y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (\operatorname {c1} \,x^{4}+\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y+x \left (\operatorname {b0} \,x^{2}+\operatorname {a0} \right ) y^{\prime }+\left (a^{2}-x^{2}\right )^{2} \left (b^{2}-x^{2}\right ) y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} -\left (a \left (a +1\right ) \left (1-x \right )+b^{2} x \right ) y+2 \left (1-3 x \right ) \left (1-x \right ) x y^{\prime }+4 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{3} \left (\operatorname {c1} \,x^{4}+\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y+\left (\operatorname {b0} \,x^{4}+\operatorname {a0} \right ) y^{\prime }+x \left (a^{2}-x^{2}\right ) \left (b^{2}-x^{2}\right ) y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (\operatorname {a0} +\operatorname {a1} \cos \left (x \right )^{2}\right ) y+a^{2} \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\left (1-a^{2} \cos \left (x \right )^{2}\right ) y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = x +6 y^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = a +b x +c y^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = a +x y+2 y^{3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = f \left (x \right )+g \left (x \right ) y+2 y^{3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = a -2 a b x y+2 y^{3} b^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = \operatorname {a0} +\operatorname {a2} y+\operatorname {a1} x y+\operatorname {a3} y^{3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} a \,x^{r} y^{s}+y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y \left (2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+3 f \left (x \right ) y^{\prime }+y^{\prime \prime } = 2 y^{3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime }+y^{\prime \prime } = -12 f \left (x \right ) y+y^{3}+12 f^{\prime }\left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = f \left (x \right ) y^{2}+y^{3}+y \left (-2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+\left (3 f \left (x \right )-y\right ) y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = \operatorname {f2} \left (x \right )+\operatorname {f3} \left (x \right ) y+\operatorname {f1} \left (x \right ) y^{2}+y^{3}+\left (3 \operatorname {f1} \left (x \right )-y\right ) y^{\prime }
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = \operatorname {g3} \left (x \right )+\operatorname {g2} \left (x \right ) y+\operatorname {g1} \left (x \right ) y^{2}+\operatorname {g0} \left (x \right ) y^{3}+\left (\operatorname {f1} \left (x \right )+\operatorname {f0} \left (x \right ) y\right ) y^{\prime }
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = f^{\prime }\left (x \right ) y+\left (f \left (x \right )-2 y\right ) y^{\prime }
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = g \left (x \right )+f \left (x \right ) y^{2}+\left (f \left (x \right )-2 y\right ) y^{\prime }
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = \operatorname {f3} \left (x \right )+\operatorname {f2} \left (x \right ) y^{2}+\left (\operatorname {f1} \left (x \right )-2 y\right ) y^{\prime }
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = \operatorname {f4} \left (x \right )+\operatorname {f3} \left (x \right ) y+\operatorname {f2} \left (x \right ) y^{2}+\left (\operatorname {f1} \left (x \right )-2 y\right ) y^{\prime }
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 3 y y^{\prime }+y^{\prime \prime } = f \left (x \right )+g \left (x \right ) y-y^{3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = f \left (x \right ) y^{2}-y^{3}+\left (f \left (x \right )-3 y\right ) y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} b y+a \left (y^{2}-1\right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} g \left (x , y\right )+f \left (x , y\right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} c y+b y^{\prime }+a {y^{\prime }}^{2}+y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} h \left (y\right )+f \left (y\right ) y^{\prime }+g \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left ({\mathrm e}^{2 y}+x \right ) {y^{\prime }}^{3}+y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = A \,x^{a} y^{b} {y^{\prime }}^{c}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = f \left (a x +b y, y^{\prime }\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = f \left (x , \frac {y^{\prime }}{y}\right ) y
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = x^{n -2} f \left (y x^{-n}, x^{-n +1} y^{\prime }\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x y^{n}+2 y^{\prime }+x y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{m} y^{n}+2 y^{\prime }+x y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} a \,x^{m} y^{n}+2 y^{\prime }+x y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} b \,{\mathrm e}^{y} x +a y^{\prime }+x y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (-y+a x y^{\prime }\right )^{2}+x y^{\prime \prime } = b
\]
|
✗ |
✗ |
✗ |
|
| \[
{} a y \left (1-y^{n}\right )+x^{2} y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} a \,{\mathrm e}^{y-1}+x^{2} y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (a +1\right ) x y^{\prime }+x^{2} y^{\prime \prime } = x^{k} f \left (x^{k} y, k y+x y^{\prime }\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 x y+a \,x^{4} {y^{\prime }}^{2}+x^{2} y^{\prime \prime } = b
\]
|
✗ |
✗ |
✗ |
|
| \[
{} b x +a y {y^{\prime }}^{2}+x^{2} y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime } = \sqrt {b y^{2}+a \,x^{2} {y^{\prime }}^{2}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime } = f \left (\frac {x y^{\prime }}{y}\right ) y
\]
|
✗ |
✓ |
✗ |
|
| \[
{} -6+x y \left (12+3 x y-2 x^{2} y^{2}\right )+x^{2} \left (9+2 x y\right ) y^{\prime }+2 x^{3} y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{b}+x^{a} y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 24-48 x y+\left (-12 x^{2}+1\right ) \left (y^{2}+3 y^{\prime }\right )+2 x \left (-4 x^{2}+1\right ) \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right ) = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} b +a x y-\left (-12 x^{2}+k \,x^{k -1}\right ) \left (y^{2}+3 y^{\prime }\right )+2 \left (-4 x^{3}+x^{k}\right ) \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right ) = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \sqrt {x}\, y^{\prime \prime } = y^{{3}/{2}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} f \left (x \right ) f^{\prime }\left (x \right ) y^{\prime }+f \left (x \right )^{2} y^{\prime \prime } = g \left (y, f \left (x \right ) y^{\prime }\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} f \left (x \right )^{2} y^{\prime \prime } = -24 f \left (x \right )^{4}+\left (3 f \left (x \right )^{3}-f \left (x \right )^{2} y+3 f \left (x \right ) f^{\prime }\left (x \right )\right ) y^{\prime }
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 f \left (x \right )^{2} y^{\prime \prime } = 2 f \left (x \right )^{2} y^{3}+f \left (x \right ) y^{2} f^{\prime }\left (x \right )+f \left (x \right ) \left (-2 f \left (x \right ) y+3 f^{\prime }\left (x \right )\right ) y^{\prime }+y \left (-2 f \left (x \right )^{3}-2 {f^{\prime }\left (x \right )}^{2}+f \left (x \right ) f^{\prime \prime }\left (x \right )\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = {\mathrm e}^{x} y \left (\operatorname {a0} +\operatorname {a1} y^{2}\right )+{\mathrm e}^{2 x} \left (\operatorname {a2} +\operatorname {a3} y^{4}\right )+{y^{\prime }}^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime \prime } = y^{2} \left (f \left (x \right ) y+g^{\prime }\left (x \right )\right )+y^{\prime }+{y^{\prime }}^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y-x y^{\prime }+{y^{\prime }}^{2}+y y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} a x y^{\prime }+{y^{\prime }}^{2}+y y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime \prime } = b y^{2}+y^{3}+a y y^{\prime }+{y^{\prime }}^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime \prime } = -y \left (f^{\prime }\left (x \right )-y^{2} g^{\prime }\left (x \right )\right )+\left (f \left (x \right )+g \left (x \right ) y^{2}\right ) y^{\prime }+{y^{\prime }}^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} g \left (x \right ) y^{2}+f \left (x \right ) y y^{\prime }+a {y^{\prime }}^{2}+y y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 y y^{\prime \prime } = 4 y^{2} \left (2 y+x \right )+{y^{\prime }}^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 y y^{\prime \prime } = -1-2 x y^{2}+a y^{3}+{y^{\prime }}^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 y y^{\prime \prime } = y^{2} \left (a x +b y\right )+{y^{\prime }}^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 y y^{\prime \prime } = -a^{2}-4 \left (-x^{2}+b \right ) y^{2}+8 x y^{3}+3 y^{4}+{y^{\prime }}^{2}
\]
|
✗ |
✗ |
✗ |
|