5.2.9 Problems 801 to 900

Table 5.43: Problems not solved by Maple

#

ODE

Mathematica

Maple

Sympy

19253

\[ {} y = {y^{\prime }}^{2}-x y^{\prime }+\frac {x^{3}}{2} \]

19261

\[ {} y^{\prime \prime }-x y^{\prime \prime \prime }+{y^{\prime \prime \prime }}^{3} = 0 \]

19268

\[ {} y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime }-x y^{2} = 0 \]

19269

\[ {} x \left (2 x y+x^{2} y^{\prime }\right ) y^{\prime \prime }+4 x {y^{\prime }}^{2}+8 y y^{\prime } x +4 y^{2}-1 = 0 \]

19272

\[ {} a^{2} y^{\prime \prime } = 2 x \sqrt {1+{y^{\prime }}^{2}} \]

19329

\[ {} y^{\prime \prime } = x +y^{2} \]

19330

\[ {} y^{\prime \prime }+2 y^{\prime }+y^{2} = 0 \]

19411

\[ {} \sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

19508

\[ {} \left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime \prime } = 2 x y-{\mathrm e}^{y}-x \]

19696

\[ {} x^{2} y^{\prime } = y \]

19706

\[ {} x^{3} \left (x -1\right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+3 x y = 0 \]

19708

\[ {} x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime } = 0 \]

19714

\[ {} x^{4} y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

19722

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}} = 0 \]

19723

\[ {} y^{\prime \prime }+\frac {n y^{\prime }}{x^{2}}+\frac {q y}{x^{3}} = 0 \]

19737

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-n^{2}+x^{2}\right ) y = 0 \]

19773

\[ {} x^{\prime \prime }+\left (5 x^{4}-9 x^{2}\right ) x^{\prime }+x^{5} = 0 \]

19822

\[ {} v^{\prime \prime } = \left (\frac {1}{v}+{v^{\prime }}^{4}\right )^{{1}/{3}} \]

19824

\[ {} \sqrt {y^{\prime }+y} = \left (y^{\prime \prime }+2 x \right )^{{1}/{4}} \]

19865

\[ {} 4 {y^{\prime }}^{3} y-2 x^{2} {y^{\prime }}^{2}+4 y y^{\prime } x +x^{3} = 16 y^{2} \]

19899

\[ {} \left (1+y^{2}\right ) y^{\prime \prime }-2 y {y^{\prime }}^{2}-2 \left (1+y^{2}\right ) y^{\prime } = y^{2} \left (1+y^{2}\right ) \]

20120

\[ {} \left (x y^{\prime }-y\right ) \left (y y^{\prime }+x \right ) = h^{2} y^{\prime } \]

20151

\[ {} \left (x y^{\prime }-y\right ) \left (x -y y^{\prime }\right ) = 2 y^{\prime } \]

20237

\[ {} y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime } = x y^{2} \]

20262

\[ {} x^{4} y^{\prime \prime }+x y^{\prime }+y = \frac {1}{x} \]

20267

\[ {} y+x y^{\prime }+2 \left (x +y\right ) {y^{\prime }}^{2}+\left (y^{2}+2 x^{2} y^{\prime }\right ) y^{\prime \prime } = 0 \]

20269

\[ {} \left (x^{3}+x +1\right ) y^{\prime \prime \prime }+\left (6 x +3\right ) y^{\prime \prime }+6 y = 0 \]

20294

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x^{{1}/{3}}}+\left (\frac {1}{4 x^{{2}/{3}}}-\frac {1}{6 x^{{1}/{3}}}-\frac {6}{x^{2}}\right ) y = 0 \]

20397

\[ {} y^{\prime }+\frac {y \ln \left (y\right )}{x} = \frac {y}{x^{2}}-\ln \left (y\right )^{2} \]

20442

\[ {} \sec \left (y\right )^{2} y^{\prime }+2 x \tan \left (y\right ) = x^{3} \]

20559

\[ {} \left (a {y^{\prime }}^{2}-b \right ) x y+\left (b \,x^{2}-a y^{2}+c \right ) y^{\prime } = 0 \]

20566

\[ {} \left (x y^{\prime }-y\right ) \left (y y^{\prime }+x \right ) = h^{2} y^{\prime } \]

20589

\[ {} a x y {y^{\prime }}^{2}+\left (x^{2}-a y^{2}-b \right ) y^{\prime }-x y = 0 \]

20593

\[ {} x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}-h^{2}\right ) y^{\prime }-x y = 0 \]

20596

\[ {} \left (x^{2} y^{\prime }+y^{2}\right ) \left (x y^{\prime }+y\right ) = \left (1+y^{\prime }\right )^{2} \]

20599

\[ {} \left (x y^{\prime }-y\right ) \left (x -y y^{\prime }\right ) = 2 y^{\prime } \]

20646

\[ {} x^{5} y^{\left (6\right )}+x^{4} y^{\left (5\right )}+x y^{\prime }+y = \ln \left (x \right ) \]

20650

\[ {} y^{2}+\left (2 x y-1\right ) y^{\prime }+x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = 0 \]

20701

\[ {} x^{2} y^{\prime \prime } = \sqrt {m \,x^{2} {y^{\prime }}^{3}+n y^{2}} \]

20704

\[ {} x^{2} y^{\prime \prime }+4 y^{2}-6 y = x^{4} {y^{\prime }}^{2} \]

20735

\[ {} 4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{3}+6 x^{2}+4\right ) y = 0 \]

20809

\[ {} \left (x y \sin \left (x y\right )+\cos \left (x y\right )\right ) y+\left (x y \sin \left (x y\right )-\cos \left (x y\right )\right ) y^{\prime } = 0 \]

20811

\[ {} 3 x^{2} y^{4}+2 x y+\left (2 y^{2} x^{3}-x^{2}\right ) y^{\prime } = 0 \]

20846

\[ {} 3 y {y^{\prime }}^{2}-2 y y^{\prime } x +4 y^{2}-x^{2} = 0 \]

20861

\[ {} \left (2 x^{2}+1\right ) {y^{\prime }}^{2}+\left (y^{2}+2 x y+x^{2}+2\right ) y^{\prime }+2 y^{2}+1 = 0 \]

20884

\[ {} y+3 x y^{\prime }+2 y {y^{\prime }}^{2}+\left (x^{2}+2 y^{2} y^{\prime }\right ) y^{\prime \prime } = 0 \]

20885

\[ {} y+x y^{\prime }+2 \left (x +y\right ) {y^{\prime }}^{2}+\left (y^{2}+2 x^{2} y^{\prime }\right ) y^{\prime \prime } = 0 \]

20893

\[ {} y^{\prime }-y y^{\prime \prime } = n \sqrt {{y^{\prime }}^{2}+a^{2} y^{\prime \prime }} \]

20897

\[ {} 2 y^{\prime }+x y^{\prime \prime } = -y^{2}+x^{2} y^{\prime } \]

20937

\[ {} 3 x^{2}+6 x y^{2}+\left (6 x^{2}+4 y^{3}\right ) y^{\prime } = 0 \]

21016

\[ {} x^{2} \left (x -2\right ) y^{\prime \prime }+4 \left (x -2\right ) y^{\prime }+3 y = 0 \]

21017

\[ {} y^{\prime \prime }+x y = 0 \]

21105

\[ {} y^{\prime } = y^{3}+x^{3} \]

21106

\[ {} y^{\prime } = x +\sqrt {1+y^{2}} \]

21155

\[ {} x^{\prime } = t^{2} x^{4}+1 \]

21157

\[ {} x^{\prime } = \sin \left (t x\right ) \]

21160

\[ {} x^{\prime } = \arctan \left (x\right )+t \]

21192

\[ {} x^{2}+y^{2}+\left (a x y+y^{4}\right ) y^{\prime } = 0 \]

21210

\[ {} {x^{\prime }}^{2} = x^{2}+t^{2}-1 \]

21222

\[ {} x^{\prime \prime }+p \left (t \right ) x^{\prime }+q \left (t \right ) x = 0 \]

21223

\[ {} x^{\prime \prime }+\frac {x^{\prime }}{t}+q \left (t \right ) x = 0 \]

21272

\[ {} x^{\prime \prime }+\frac {\left (t^{5}+1\right ) x}{t^{4}+5} = 0 \]

21273

\[ {} x^{\prime \prime }+\sqrt {t^{6}+3 t^{5}+1}\, x = 0 \]

21275

\[ {} x^{\prime \prime }-p \left (t \right ) x = q \left (t \right ) \]

21276

\[ {} x^{\prime \prime }+p \left (t \right ) x^{\prime }+q \left (t \right ) x = 0 \]

21310

\[ {} x^{\left (5\right )}+x = 0 \]

21385

\[ {} t x^{\prime \prime } = t x+1 \]

21391

\[ {} t^{2} x^{\prime \prime }+t x^{\prime }+x t^{2} = 0 \]

21393

\[ {} t^{2} x^{\prime \prime }+t x^{\prime }+\left (-m^{2}+t^{2}\right ) x = 0 \]

21395

\[ {} t^{2} x^{\prime \prime }+t x^{\prime }+x t^{2} = \lambda x \]

21432

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )+y \left (t \right )^{2}, y^{\prime }\left (t \right ) = -2 y \left (t \right )-x \left (t \right )^{2}] \]

21440

\[ {} -x^{\prime \prime } = 1-x-x^{2} \]

21441

\[ {} -x^{\prime \prime }+x = {\mathrm e}^{-x} \]

21442

\[ {} -x^{\prime \prime }+x = {\mathrm e}^{-x^{2}} \]

21443

\[ {} -x^{\prime \prime } = \frac {1}{\sqrt {1+x^{2}}}-x \]

21462

\[ {} y^{\prime } = -\frac {x}{y} \]

21582

\[ {} y^{\prime } = 1+x +x^{2} \cos \left (x \right )-\left (1+4 x \cos \left (x \right )\right ) y+2 y^{2} \cos \left (x \right ) \]

21665

\[ {} a_{0} \left (x \right ) y^{\prime \prime }+a_{1} \left (x \right ) y^{\prime }+a_{2} \left (x \right ) y = f \left (x \right ) \]

21743

\[ {} x^{2} y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

21755

\[ {} x^{2} y^{\prime \prime }+y^{\prime }+y = 0 \]

21771

\[ {} \left (x^{2}+2\right ) y^{\prime \prime }+\left (2 x +\frac {2}{x}\right ) y^{\prime }+2 x^{2} y = \frac {4 x^{2}+2 x +10}{x^{4}} \]

21800

\[ {} x^{2} y^{\prime \prime }-\left (x +4\right ) y^{\prime }+2 y = 0 \]

21816

\[ {} x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+8 x y^{\prime }-8 y = 4 \ln \left (x \right ) \]

21817

\[ {} x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+x y^{\prime }-y = -\ln \left (x \right ) \]

21845

\[ {} y^{\prime \prime }+4 y = 0 \]

21850

\[ {} y^{\prime \prime } \cos \left (y\right )+\left (\cos \left (y\right )-y^{\prime } \sin \left (y\right )\right ) y^{\prime }-2 x y = 0 \]

21865

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = -4 x \left (t \right )+4 y \left (t \right )] \]

21895

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+4 y \left (t \right )-y \left (t \right )^{2}, y^{\prime }\left (t \right ) = 6 x \left (t \right )-y \left (t \right )+2 x \left (t \right ) y \left (t \right )] \]

21896

\[ {} [x^{\prime }\left (t \right ) = \sin \left (x \left (t \right )\right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = \sin \left (2 x \left (t \right )\right )-5 y \left (t \right )] \]

21897

\[ {} [x^{\prime }\left (t \right ) = 8 x \left (t \right )-y \left (t \right )^{2}, y^{\prime }\left (t \right ) = 6 x \left (t \right )^{2}-6 y \left (t \right )] \]

21899

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )^{3}-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )] \]

21943

\[ {} y = \left (2 x^{2} y^{3}-x \right ) y^{\prime } \]

21955

\[ {} y^{3} \left (y y^{\prime }+x \right ) = \left (x^{2}+y^{2}\right )^{3} y^{\prime } \]

21969

\[ {} a x y-b +\left (c x y-d \right ) x y^{\prime } = 0 \]

22068

\[ {} 5 {b^{\prime \prime \prime \prime }}^{5}+7 {b^{\prime }}^{10}+b^{7}-b^{5} = p \]

22070

\[ {} {y^{\prime \prime }}^{2}-3 y y^{\prime }+x y = 0 \]

22073

\[ {} y^{\prime \prime \prime \prime }+x y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-x y^{\prime }+\sin \left (y\right ) = 0 \]

22074

\[ {} {r^{\prime \prime }}^{2}+r^{\prime \prime }+y r^{\prime } = 0 \]

22085

\[ {} y^{\prime \prime }+4 y = 0 \]

22089

\[ {} y^{\prime } = x \sin \left (y\right )+{\mathrm e}^{x} \]