| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y = {y^{\prime }}^{2}-x y^{\prime }+\frac {x^{3}}{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }-x y^{\prime \prime \prime }+{y^{\prime \prime \prime }}^{3} = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime }-x y^{2} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x \left (2 x y+x^{2} y^{\prime }\right ) y^{\prime \prime }+4 x {y^{\prime }}^{2}+8 y y^{\prime } x +4 y^{2}-1 = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} a^{2} y^{\prime \prime } = 2 x \sqrt {1+{y^{\prime }}^{2}}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = x +y^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+y^{2} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} \left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime \prime } = 2 x y-{\mathrm e}^{y}-x
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime } = y
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{3} \left (x -1\right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+3 x y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime } = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{4} y^{\prime \prime }+\sin \left (x \right ) y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}} = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+\frac {n y^{\prime }}{x^{2}}+\frac {q y}{x^{3}} = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-n^{2}+x^{2}\right ) y = 0
\]
|
✓ |
✗ |
✓ |
|
| \[
{} x^{\prime \prime }+\left (5 x^{4}-9 x^{2}\right ) x^{\prime }+x^{5} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} v^{\prime \prime } = \left (\frac {1}{v}+{v^{\prime }}^{4}\right )^{{1}/{3}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \sqrt {y^{\prime }+y} = \left (y^{\prime \prime }+2 x \right )^{{1}/{4}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 4 {y^{\prime }}^{3} y-2 x^{2} {y^{\prime }}^{2}+4 y y^{\prime } x +x^{3} = 16 y^{2}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} \left (1+y^{2}\right ) y^{\prime \prime }-2 y {y^{\prime }}^{2}-2 \left (1+y^{2}\right ) y^{\prime } = y^{2} \left (1+y^{2}\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x y^{\prime }-y\right ) \left (y y^{\prime }+x \right ) = h^{2} y^{\prime }
\]
|
✓ |
✗ |
✗ |
|
| \[
{} \left (x y^{\prime }-y\right ) \left (x -y y^{\prime }\right ) = 2 y^{\prime }
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime } = x y^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{4} y^{\prime \prime }+x y^{\prime }+y = \frac {1}{x}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y+x y^{\prime }+2 \left (x +y\right ) {y^{\prime }}^{2}+\left (y^{2}+2 x^{2} y^{\prime }\right ) y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x^{3}+x +1\right ) y^{\prime \prime \prime }+\left (6 x +3\right ) y^{\prime \prime }+6 y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+\frac {y^{\prime }}{x^{{1}/{3}}}+\left (\frac {1}{4 x^{{2}/{3}}}-\frac {1}{6 x^{{1}/{3}}}-\frac {6}{x^{2}}\right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime }+\frac {y \ln \left (y\right )}{x} = \frac {y}{x^{2}}-\ln \left (y\right )^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \sec \left (y\right )^{2} y^{\prime }+2 x \tan \left (y\right ) = x^{3}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} \left (a {y^{\prime }}^{2}-b \right ) x y+\left (b \,x^{2}-a y^{2}+c \right ) y^{\prime } = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} \left (x y^{\prime }-y\right ) \left (y y^{\prime }+x \right ) = h^{2} y^{\prime }
\]
|
✓ |
✗ |
✗ |
|
| \[
{} a x y {y^{\prime }}^{2}+\left (x^{2}-a y^{2}-b \right ) y^{\prime }-x y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}-h^{2}\right ) y^{\prime }-x y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x^{2} y^{\prime }+y^{2}\right ) \left (x y^{\prime }+y\right ) = \left (1+y^{\prime }\right )^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x y^{\prime }-y\right ) \left (x -y y^{\prime }\right ) = 2 y^{\prime }
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{5} y^{\left (6\right )}+x^{4} y^{\left (5\right )}+x y^{\prime }+y = \ln \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{2}+\left (2 x y-1\right ) y^{\prime }+x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime } = \sqrt {m \,x^{2} {y^{\prime }}^{3}+n y^{2}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+4 y^{2}-6 y = x^{4} {y^{\prime }}^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{3}+6 x^{2}+4\right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x y \sin \left (x y\right )+\cos \left (x y\right )\right ) y+\left (x y \sin \left (x y\right )-\cos \left (x y\right )\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 3 x^{2} y^{4}+2 x y+\left (2 y^{2} x^{3}-x^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 3 y {y^{\prime }}^{2}-2 y y^{\prime } x +4 y^{2}-x^{2} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (2 x^{2}+1\right ) {y^{\prime }}^{2}+\left (y^{2}+2 x y+x^{2}+2\right ) y^{\prime }+2 y^{2}+1 = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y+3 x y^{\prime }+2 y {y^{\prime }}^{2}+\left (x^{2}+2 y^{2} y^{\prime }\right ) y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y+x y^{\prime }+2 \left (x +y\right ) {y^{\prime }}^{2}+\left (y^{2}+2 x^{2} y^{\prime }\right ) y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime }-y y^{\prime \prime } = n \sqrt {{y^{\prime }}^{2}+a^{2} y^{\prime \prime }}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 y^{\prime }+x y^{\prime \prime } = -y^{2}+x^{2} y^{\prime }
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 3 x^{2}+6 x y^{2}+\left (6 x^{2}+4 y^{3}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{2} \left (x -2\right ) y^{\prime \prime }+4 \left (x -2\right ) y^{\prime }+3 y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+x y = 0
\]
|
✓ |
✗ |
✓ |
|
| \[
{} y^{\prime } = y^{3}+x^{3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = x +\sqrt {1+y^{2}}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{\prime } = t^{2} x^{4}+1
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime } = \sin \left (t x\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime } = \arctan \left (x\right )+t
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{2}+y^{2}+\left (a x y+y^{4}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {x^{\prime }}^{2} = x^{2}+t^{2}-1
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }+p \left (t \right ) x^{\prime }+q \left (t \right ) x = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }+\frac {x^{\prime }}{t}+q \left (t \right ) x = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }+\frac {\left (t^{5}+1\right ) x}{t^{4}+5} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }+\sqrt {t^{6}+3 t^{5}+1}\, x = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }-p \left (t \right ) x = q \left (t \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }+p \left (t \right ) x^{\prime }+q \left (t \right ) x = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\left (5\right )}+x = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} t x^{\prime \prime } = t x+1
\]
|
✗ |
✗ |
✗ |
|
| \[
{} t^{2} x^{\prime \prime }+t x^{\prime }+x t^{2} = 0
\]
|
✗ |
✗ |
✓ |
|
| \[
{} t^{2} x^{\prime \prime }+t x^{\prime }+\left (-m^{2}+t^{2}\right ) x = 0
\]
|
✓ |
✗ |
✓ |
|
| \[
{} t^{2} x^{\prime \prime }+t x^{\prime }+x t^{2} = \lambda x
\]
|
✓ |
✗ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )+y \left (t \right )^{2}, y^{\prime }\left (t \right ) = -2 y \left (t \right )-x \left (t \right )^{2}]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} -x^{\prime \prime } = 1-x-x^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} -x^{\prime \prime }+x = {\mathrm e}^{-x}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} -x^{\prime \prime }+x = {\mathrm e}^{-x^{2}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} -x^{\prime \prime } = \frac {1}{\sqrt {1+x^{2}}}-x
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = -\frac {x}{y}
\]
|
✓ |
✗ |
✓ |
|
| \[
{} y^{\prime } = 1+x +x^{2} \cos \left (x \right )-\left (1+4 x \cos \left (x \right )\right ) y+2 y^{2} \cos \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} a_{0} \left (x \right ) y^{\prime \prime }+a_{1} \left (x \right ) y^{\prime }+a_{2} \left (x \right ) y = f \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+2 y^{\prime }+x y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+y^{\prime }+y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} \left (x^{2}+2\right ) y^{\prime \prime }+\left (2 x +\frac {2}{x}\right ) y^{\prime }+2 x^{2} y = \frac {4 x^{2}+2 x +10}{x^{4}}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-\left (x +4\right ) y^{\prime }+2 y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+8 x y^{\prime }-8 y = 4 \ln \left (x \right )
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+x y^{\prime }-y = -\ln \left (x \right )
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+4 y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } \cos \left (y\right )+\left (\cos \left (y\right )-y^{\prime } \sin \left (y\right )\right ) y^{\prime }-2 x y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = -4 x \left (t \right )+4 y \left (t \right )]
\]
|
✓ |
✗ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+4 y \left (t \right )-y \left (t \right )^{2}, y^{\prime }\left (t \right ) = 6 x \left (t \right )-y \left (t \right )+2 x \left (t \right ) y \left (t \right )]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = \sin \left (x \left (t \right )\right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = \sin \left (2 x \left (t \right )\right )-5 y \left (t \right )]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = 8 x \left (t \right )-y \left (t \right )^{2}, y^{\prime }\left (t \right ) = 6 x \left (t \right )^{2}-6 y \left (t \right )]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = -x \left (t \right )^{3}-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y = \left (2 x^{2} y^{3}-x \right ) y^{\prime }
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{3} \left (y y^{\prime }+x \right ) = \left (x^{2}+y^{2}\right )^{3} y^{\prime }
\]
|
✗ |
✗ |
✗ |
|
| \[
{} a x y-b +\left (c x y-d \right ) x y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 5 {b^{\prime \prime \prime \prime }}^{5}+7 {b^{\prime }}^{10}+b^{7}-b^{5} = p
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {y^{\prime \prime }}^{2}-3 y y^{\prime }+x y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime \prime \prime }+x y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-x y^{\prime }+\sin \left (y\right ) = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {r^{\prime \prime }}^{2}+r^{\prime \prime }+y r^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+4 y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = x \sin \left (y\right )+{\mathrm e}^{x}
\]
|
✗ |
✗ |
✗ |
|