5.2.8 Problems 701 to 800

Table 5.41: Problems not solved by Maple

#

ODE

Mathematica

Maple

Sympy

14982

\[ {} x^{\prime \prime }+\left (5 x^{4}-6 x^{2}\right ) x^{\prime }+x^{3} = 0 \]

14983

\[ {} x^{\prime \prime }+\left (1+x^{2}\right ) x^{\prime }+x^{3} = 0 \]

15011

\[ {} x^{\prime } = -x \left (k^{2}+x^{2}\right ) \]

15067

\[ {} \left (\cos \left (t \right ) t -\sin \left (t \right )\right ) x^{\prime \prime }-x^{\prime } t \sin \left (t \right )-x \sin \left (t \right ) = 0 \]

15151

\[ {} y^{\prime } = x y^{3}+x^{2} \]

15231

\[ {} y^{\prime } = \sin \left (x y\right ) \]

15235

\[ {} y^{\prime } = t \ln \left (y^{2 t}\right )+t^{2} \]

15237

\[ {} y^{\prime } = \ln \left (x y\right ) \]

15243

\[ {} y^{\prime \prime }+y y^{\prime \prime \prime \prime } = 1 \]

15255

\[ {} y^{\prime \prime \prime }+x y^{\prime \prime }-y^{2} = \sin \left (x \right ) \]

15256

\[ {} {y^{\prime }}^{2}+x y {y^{\prime }}^{2} = \ln \left (x \right ) \]

15257

\[ {} \sin \left (y^{\prime \prime }\right )+y y^{\prime \prime \prime \prime } = 1 \]

15258

\[ {} \sinh \left (x \right ) {y^{\prime }}^{2}+y^{\prime \prime } = x y \]

15260

\[ {} {y^{\prime \prime \prime }}^{2}+\sqrt {y} = \sin \left (x \right ) \]

15265

\[ {} \left (x -3\right ) y^{\prime \prime }+y \ln \left (x \right ) = x^{2} \]

15268

\[ {} x y^{\prime \prime }+2 x^{2} y^{\prime }+\sin \left (x \right ) y = \sinh \left (x \right ) \]

15269

\[ {} \sin \left (x \right ) y^{\prime \prime }+x y^{\prime }+7 y = 1 \]

15281

\[ {} \ln \left (x^{2}+1\right ) y^{\prime \prime }+\frac {4 x y^{\prime }}{x^{2}+1}+\frac {\left (-x^{2}+1\right ) y}{\left (x^{2}+1\right )^{2}} = 0 \]

15286

\[ {} x y^{\prime \prime }+\left (6 x y^{2}+1\right ) y^{\prime }+2 y^{3}+1 = 0 \]

15298

\[ {} y^{\prime \prime }+\frac {\left (x -1\right ) y^{\prime }}{x}+\frac {y}{x^{3}} = \frac {{\mathrm e}^{-\frac {1}{x}}}{x^{3}} \]

15369

\[ {} t^{2} y^{\prime \prime }-6 t y^{\prime }+y \sin \left (2 t \right ) = \ln \left (t \right ) \]

15371

\[ {} y^{\prime \prime }+t y^{\prime }-y \ln \left (t \right ) = \cos \left (2 t \right ) \]

15423

\[ {} x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

15424

\[ {} x^{2} y^{\prime \prime }+y^{\prime }-2 y = 0 \]

15438

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+x \left (t \right ) = 0, x^{\prime }\left (t \right )-x \left (t \right )+2 y^{\prime }\left (t \right ) = {\mathrm e}^{-t}] \]

15444

\[ {} x y \left (1-{y^{\prime }}^{2}\right ) = \left (-y^{2}-a^{2}+x^{2}\right ) y^{\prime } \]

15593

\[ {} x^{\prime \prime }+x^{\prime }+x-x^{3} = 0 \]

15594

\[ {} x^{\prime \prime }+x^{\prime }+x+x^{3} = 0 \]

15637

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

15654

\[ {} y^{\prime } = y^{3}+x^{3} \]

15659

\[ {} y^{\prime } = \frac {1}{\sqrt {15-x^{2}-y^{2}}} \]

15772

\[ {} \left (x^{2}-4\right ) y^{\prime \prime }+y \ln \left (x \right ) = x \,{\mathrm e}^{x} \]

15850

\[ {} \left [y_{1}^{\prime }\left (x \right ) = \sin \left (x \right ) y_{1} \left (x \right )+\sqrt {x}\, y_{2} \left (x \right )+\ln \left (x \right ), y_{2}^{\prime }\left (x \right ) = \tan \left (x \right ) y_{1} \left (x \right )-{\mathrm e}^{x} y_{2} \left (x \right )+1\right ] \]

15851

\[ {} \left [y_{1}^{\prime }\left (x \right ) = \sin \left (x \right ) y_{1} \left (x \right )+\sqrt {x}\, y_{2} \left (x \right )+\ln \left (x \right ), y_{2}^{\prime }\left (x \right ) = \tan \left (x \right ) y_{1} \left (x \right )-{\mathrm e}^{x} y_{2} \left (x \right )+1\right ] \]

15852

\[ {} \left [y_{1}^{\prime }\left (x \right ) = {\mathrm e}^{-x} y_{1} \left (x \right )-\sqrt {1+x}\, y_{2} \left (x \right )+x^{2}, y_{2}^{\prime }\left (x \right ) = \frac {y_{1} \left (x \right )}{\left (x -2\right )^{2}}\right ] \]

15853

\[ {} \left [y_{1}^{\prime }\left (x \right ) = {\mathrm e}^{-x} y_{1} \left (x \right )-\sqrt {1+x}\, y_{2} \left (x \right )+x^{2}, y_{2}^{\prime }\left (x \right ) = \frac {y_{1} \left (x \right )}{\left (x -2\right )^{2}}\right ] \]

15865

\[ {} [y_{1}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right ) x -x^{2} y_{2} \left (x \right )+4 x, y_{2}^{\prime }\left (x \right ) = {\mathrm e}^{x} y_{1} \left (x \right )+3 \,{\mathrm e}^{-x} y_{2} \left (x \right )-\cos \left (3 x \right )] \]

15961

\[ {} y^{\prime } = 2 y^{3}+t^{2} \]

16057

\[ {} y^{\prime } = \left (y-3\right ) \left (\sin \left (y\right ) \sin \left (t \right )+\cos \left (t \right )+1\right ) \]

16080

\[ {} y^{\prime } = \left (-1+y\right ) \left (-2+y\right ) \left (y-{\mathrm e}^{\frac {t}{2}}\right ) \]

16273

\[ {} y^{2} y^{\prime \prime } = 8 x^{2} \]

16312

\[ {} \sin \left (x +y\right )-y y^{\prime } = 0 \]

16371

\[ {} y^{2} y^{\prime }+3 x^{2} y = \sin \left (x \right ) \]

16552

\[ {} y^{\prime \prime }+x^{2} y^{\prime }+4 y = y^{3} \]

16558

\[ {} y y^{\prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime } = y \]

16582

\[ {} x^{3} y^{\prime \prime \prime }-4 y^{\prime \prime }+10 y^{\prime }-12 y = 0 \]

17066

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right )-6 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )-5] \]

17073

\[ {} x {y^{\prime \prime }}^{2}+2 y = 2 x \]

17074

\[ {} x^{\prime \prime }+2 \sin \left (x\right ) = \sin \left (2 t \right ) \]

17124

\[ {} 4 x \left (x^{2}+y^{2}\right )-5 y+4 y \left (x^{2}+y^{2}-5 x \right ) y^{\prime } = 0 \]

17149

\[ {} y^{\prime }+t^{2} = \frac {1}{y^{2}} \]

17334

\[ {} 1-y^{2} \cos \left (t y\right )+\left (t y \cos \left (t y\right )+\sin \left (t y\right )\right ) y^{\prime } = 0 \]

17344

\[ {} {\mathrm e}^{y}-2 t y+\left (t \,{\mathrm e}^{y}-t^{2}\right ) y^{\prime } = 0 \]

17348

\[ {} \frac {1}{t^{2}+1}-y^{2}-2 t y y^{\prime } = 0 \]

17349

\[ {} \frac {2 t}{t^{2}+1}+y+\left ({\mathrm e}^{y}+t \right ) y^{\prime } = 0 \]

17491

\[ {} y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \]

17719

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime } = \sec \left (t \right )^{2} \]

17820

\[ {} x \left (1+x \right ) y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}+5 y = 0 \]

17958

\[ {} y^{\prime } = \sin \left (y\right )-\cos \left (x \right ) \]

18018

\[ {} x^{3} y^{\prime }-\sin \left (y\right ) = 1 \]

18214

\[ {} y^{\prime \prime \prime } = \sqrt {1-{y^{\prime \prime }}^{2}} \]

18234

\[ {} y^{3} y^{\prime \prime } = -1 \]

18461

\[ {} x^{\prime \prime }-2 {x^{\prime }}^{2}+x^{\prime }-2 x = 0 \]

18463

\[ {} x^{\prime \prime }+{\mathrm e}^{-x^{\prime }}-x = 0 \]

18466

\[ {} x^{\prime \prime }-x^{\prime }+x-x^{2} = 0 \]

18470

\[ {} y^{\prime \prime }+y = 0 \]

18541

\[ {} \left [x^{\prime }\left (t \right ) = \cos \left (x \left (t \right )\right )^{2} \cos \left (y \left (t \right )\right )^{2}+\sin \left (x \left (t \right )\right )^{2} \cos \left (y \left (t \right )\right )^{2}, y^{\prime }\left (t \right ) = -\frac {\sin \left (2 x \left (t \right )\right ) \sin \left (2 y \left (t \right )\right )}{2}\right ] \]

18666

\[ {} y^{\prime } = \sqrt {1-t^{2}-y^{2}} \]

18667

\[ {} y^{\prime } = \frac {\ln \left (t y\right )}{1-t^{2}+y^{2}} \]

18668

\[ {} y^{\prime } = \left (t^{2}+y^{2}\right )^{{3}/{2}} \]

18673

\[ {} y^{\prime } = -\frac {4 t}{y} \]

18676

\[ {} y^{\prime } = \frac {t^{2}}{\left (t^{3}+1\right ) y} \]

18689

\[ {} {\mathrm e}^{x} \sin \left (y\right )+3 y-\left (3 x -{\mathrm e}^{x} \sin \left (y\right )\right ) y^{\prime } = 0 \]

18705

\[ {} \frac {4 x^{3}}{y^{2}}+\frac {12}{y}+3 \left (\frac {x}{y^{2}}+4 y\right ) y^{\prime } = 0 \]

18719

\[ {} y^{\prime } = \frac {x +y}{x -y} \]

18823

\[ {} [x^{\prime }\left (t \right ) = 2-y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right )^{2}] \]

18824

\[ {} \left [x^{\prime }\left (t \right ) = x \left (t \right )-x \left (t \right )^{2}-x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = \frac {y \left (t \right )}{2}-\frac {y \left (t \right )^{2}}{4}-\frac {3 x \left (t \right ) y \left (t \right )}{4}\right ] \]

18825

\[ {} [x^{\prime }\left (t \right ) = -\left (x \left (t \right )-y \left (t \right )\right ) \left (1-x \left (t \right )-y \left (t \right )\right ), y^{\prime }\left (t \right ) = x \left (t \right ) \left (y \left (t \right )+2\right )] \]

18826

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ) \left (2-x \left (t \right )-y \left (t \right )\right ), y^{\prime }\left (t \right ) = -x \left (t \right )-y \left (t \right )-2 x \left (t \right ) y \left (t \right )] \]

18827

\[ {} [x^{\prime }\left (t \right ) = \left (x \left (t \right )+2\right ) \left (-x \left (t \right )+y \left (t \right )\right ), y^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right )^{2}-y \left (t \right )^{2}] \]

18829

\[ {} \left [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-\frac {x \left (t \right )^{3}}{5}-\frac {y \left (t \right )}{5}\right ] \]

18831

\[ {} \left [x^{\prime }\left (t \right ) = x \left (t \right ) \left (1-x \left (t \right )-y \left (t \right )\right ), y^{\prime }\left (t \right ) = y \left (t \right ) \left (\frac {3}{4}-y \left (t \right )-\frac {x \left (t \right )}{2}\right )\right ] \]

18833

\[ {} y^{\prime \prime }+y^{\prime }+y+y^{3} = 0 \]

18836

\[ {} y^{\prime \prime }+\mu \left (1-y^{2}\right ) y^{\prime }+y = 0 \]

18847

\[ {} y^{\prime \prime }+\cos \left (t \right ) y^{\prime }+3 y \ln \left (t \right ) = 0 \]

18848

\[ {} \left (x +3\right ) y^{\prime \prime }+x y^{\prime }+y \ln \left (x \right ) = 0 \]

18849

\[ {} \left (x -2\right ) y^{\prime \prime }+y^{\prime }+\left (x -2\right ) \tan \left (x \right ) y = 0 \]

18851

\[ {} y^{\prime \prime }-\frac {t}{y} = \frac {1}{\pi } \]

18971

\[ {} y^{\prime \prime }+y+\frac {y^{3}}{5} = \cos \left (w t \right ) \]

18972

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{5}+y+\frac {y^{3}}{5} = \cos \left (w t \right ) \]

19081

\[ {} t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+8 y = \cos \left (t \right ) \]

19082

\[ {} t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y = 0 \]

19083

\[ {} y^{\prime \prime \prime }+t y^{\prime \prime }+t^{2} y^{\prime }+t^{2} y = \ln \left (t \right ) \]

19084

\[ {} \left (x -4\right ) y^{\prime \prime \prime \prime }+\left (1+x \right ) y^{\prime \prime }+y \tan \left (x \right ) = 0 \]

19085

\[ {} \left (x^{2}-2\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+3 y = 0 \]

19087

\[ {} t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+4 y = \cos \left (t \right ) \]

19088

\[ {} t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+7 t^{2} y = 0 \]

19089

\[ {} y^{\prime \prime \prime }+t y^{\prime \prime }+5 t^{2} y^{\prime }+2 t^{3} y = \ln \left (t \right ) \]

19090

\[ {} \left (x -1\right ) y^{\prime \prime \prime \prime }+\left (x +5\right ) y^{\prime \prime }+y \tan \left (x \right ) = 0 \]

19091

\[ {} \left (x^{2}-25\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+5 y = 0 \]