| # | ODE | Mathematica | Maple | Sympy |
| \[
{} x^{\prime \prime }+\left (5 x^{4}-6 x^{2}\right ) x^{\prime }+x^{3} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }+\left (1+x^{2}\right ) x^{\prime }+x^{3} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime } = -x \left (k^{2}+x^{2}\right )
\]
|
✓ |
✗ |
✗ |
|
| \[
{} \left (\cos \left (t \right ) t -\sin \left (t \right )\right ) x^{\prime \prime }-x^{\prime } t \sin \left (t \right )-x \sin \left (t \right ) = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = x y^{3}+x^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \sin \left (x y\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = t \ln \left (y^{2 t}\right )+t^{2}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \ln \left (x y\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y y^{\prime \prime \prime \prime } = 1
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime \prime }+x y^{\prime \prime }-y^{2} = \sin \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {y^{\prime }}^{2}+x y {y^{\prime }}^{2} = \ln \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \sin \left (y^{\prime \prime }\right )+y y^{\prime \prime \prime \prime } = 1
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \sinh \left (x \right ) {y^{\prime }}^{2}+y^{\prime \prime } = x y
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {y^{\prime \prime \prime }}^{2}+\sqrt {y} = \sin \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x -3\right ) y^{\prime \prime }+y \ln \left (x \right ) = x^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x y^{\prime \prime }+2 x^{2} y^{\prime }+\sin \left (x \right ) y = \sinh \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \sin \left (x \right ) y^{\prime \prime }+x y^{\prime }+7 y = 1
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \ln \left (x^{2}+1\right ) y^{\prime \prime }+\frac {4 x y^{\prime }}{x^{2}+1}+\frac {\left (-x^{2}+1\right ) y}{\left (x^{2}+1\right )^{2}} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x y^{\prime \prime }+\left (6 x y^{2}+1\right ) y^{\prime }+2 y^{3}+1 = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+\frac {\left (x -1\right ) y^{\prime }}{x}+\frac {y}{x^{3}} = \frac {{\mathrm e}^{-\frac {1}{x}}}{x^{3}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} t^{2} y^{\prime \prime }-6 t y^{\prime }+y \sin \left (2 t \right ) = \ln \left (t \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+t y^{\prime }-y \ln \left (t \right ) = \cos \left (2 t \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+y^{\prime }-2 y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+x \left (t \right ) = 0, x^{\prime }\left (t \right )-x \left (t \right )+2 y^{\prime }\left (t \right ) = {\mathrm e}^{-t}]
\]
|
✓ |
✗ |
✓ |
|
| \[
{} x y \left (1-{y^{\prime }}^{2}\right ) = \left (-y^{2}-a^{2}+x^{2}\right ) y^{\prime }
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }+x^{\prime }+x-x^{3} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }+x^{\prime }+x+x^{3} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0
\]
|
✗ |
✗ |
✓ |
|
| \[
{} y^{\prime } = y^{3}+x^{3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \frac {1}{\sqrt {15-x^{2}-y^{2}}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x^{2}-4\right ) y^{\prime \prime }+y \ln \left (x \right ) = x \,{\mathrm e}^{x}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left [y_{1}^{\prime }\left (x \right ) = \sin \left (x \right ) y_{1} \left (x \right )+\sqrt {x}\, y_{2} \left (x \right )+\ln \left (x \right ), y_{2}^{\prime }\left (x \right ) = \tan \left (x \right ) y_{1} \left (x \right )-{\mathrm e}^{x} y_{2} \left (x \right )+1\right ]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left [y_{1}^{\prime }\left (x \right ) = \sin \left (x \right ) y_{1} \left (x \right )+\sqrt {x}\, y_{2} \left (x \right )+\ln \left (x \right ), y_{2}^{\prime }\left (x \right ) = \tan \left (x \right ) y_{1} \left (x \right )-{\mathrm e}^{x} y_{2} \left (x \right )+1\right ]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left [y_{1}^{\prime }\left (x \right ) = {\mathrm e}^{-x} y_{1} \left (x \right )-\sqrt {1+x}\, y_{2} \left (x \right )+x^{2}, y_{2}^{\prime }\left (x \right ) = \frac {y_{1} \left (x \right )}{\left (x -2\right )^{2}}\right ]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left [y_{1}^{\prime }\left (x \right ) = {\mathrm e}^{-x} y_{1} \left (x \right )-\sqrt {1+x}\, y_{2} \left (x \right )+x^{2}, y_{2}^{\prime }\left (x \right ) = \frac {y_{1} \left (x \right )}{\left (x -2\right )^{2}}\right ]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [y_{1}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right ) x -x^{2} y_{2} \left (x \right )+4 x, y_{2}^{\prime }\left (x \right ) = {\mathrm e}^{x} y_{1} \left (x \right )+3 \,{\mathrm e}^{-x} y_{2} \left (x \right )-\cos \left (3 x \right )]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = 2 y^{3}+t^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \left (y-3\right ) \left (\sin \left (y\right ) \sin \left (t \right )+\cos \left (t \right )+1\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \left (-1+y\right ) \left (-2+y\right ) \left (y-{\mathrm e}^{\frac {t}{2}}\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{2} y^{\prime \prime } = 8 x^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \sin \left (x +y\right )-y y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{2} y^{\prime }+3 x^{2} y = \sin \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+x^{2} y^{\prime }+4 y = y^{3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime } = y
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime \prime }-4 y^{\prime \prime }+10 y^{\prime }-12 y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right )-6 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )-5]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x {y^{\prime \prime }}^{2}+2 y = 2 x
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }+2 \sin \left (x\right ) = \sin \left (2 t \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 4 x \left (x^{2}+y^{2}\right )-5 y+4 y \left (x^{2}+y^{2}-5 x \right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime }+t^{2} = \frac {1}{y^{2}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 1-y^{2} \cos \left (t y\right )+\left (t y \cos \left (t y\right )+\sin \left (t y\right )\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {\mathrm e}^{y}-2 t y+\left (t \,{\mathrm e}^{y}-t^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \frac {1}{t^{2}+1}-y^{2}-2 t y y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \frac {2 t}{t^{2}+1}+y+\left ({\mathrm e}^{y}+t \right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime \prime \prime }+y^{\prime \prime } = \sec \left (t \right )^{2}
\]
|
✓ |
✗ |
✓ |
|
| \[
{} x \left (1+x \right ) y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}+5 y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \sin \left (y\right )-\cos \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{3} y^{\prime }-\sin \left (y\right ) = 1
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime \prime } = \sqrt {1-{y^{\prime \prime }}^{2}}
\]
|
✓ |
✗ |
✓ |
|
| \[
{} y^{3} y^{\prime \prime } = -1
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }-2 {x^{\prime }}^{2}+x^{\prime }-2 x = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }+{\mathrm e}^{-x^{\prime }}-x = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }-x^{\prime }+x-x^{2} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = \cos \left (x \left (t \right )\right )^{2} \cos \left (y \left (t \right )\right )^{2}+\sin \left (x \left (t \right )\right )^{2} \cos \left (y \left (t \right )\right )^{2}, y^{\prime }\left (t \right ) = -\frac {\sin \left (2 x \left (t \right )\right ) \sin \left (2 y \left (t \right )\right )}{2}\right ]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \sqrt {1-t^{2}-y^{2}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \frac {\ln \left (t y\right )}{1-t^{2}+y^{2}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \left (t^{2}+y^{2}\right )^{{3}/{2}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = -\frac {4 t}{y}
\]
|
✓ |
✗ |
✓ |
|
| \[
{} y^{\prime } = \frac {t^{2}}{\left (t^{3}+1\right ) y}
\]
|
✓ |
✗ |
✓ |
|
| \[
{} {\mathrm e}^{x} \sin \left (y\right )+3 y-\left (3 x -{\mathrm e}^{x} \sin \left (y\right )\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \frac {4 x^{3}}{y^{2}}+\frac {12}{y}+3 \left (\frac {x}{y^{2}}+4 y\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \frac {x +y}{x -y}
\]
|
✓ |
✗ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2-y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right )^{2}]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = x \left (t \right )-x \left (t \right )^{2}-x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = \frac {y \left (t \right )}{2}-\frac {y \left (t \right )^{2}}{4}-\frac {3 x \left (t \right ) y \left (t \right )}{4}\right ]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = -\left (x \left (t \right )-y \left (t \right )\right ) \left (1-x \left (t \right )-y \left (t \right )\right ), y^{\prime }\left (t \right ) = x \left (t \right ) \left (y \left (t \right )+2\right )]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = y \left (t \right ) \left (2-x \left (t \right )-y \left (t \right )\right ), y^{\prime }\left (t \right ) = -x \left (t \right )-y \left (t \right )-2 x \left (t \right ) y \left (t \right )]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = \left (x \left (t \right )+2\right ) \left (-x \left (t \right )+y \left (t \right )\right ), y^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right )^{2}-y \left (t \right )^{2}]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-\frac {x \left (t \right )^{3}}{5}-\frac {y \left (t \right )}{5}\right ]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left [x^{\prime }\left (t \right ) = x \left (t \right ) \left (1-x \left (t \right )-y \left (t \right )\right ), y^{\prime }\left (t \right ) = y \left (t \right ) \left (\frac {3}{4}-y \left (t \right )-\frac {x \left (t \right )}{2}\right )\right ]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y+y^{3} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+\mu \left (1-y^{2}\right ) y^{\prime }+y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+\cos \left (t \right ) y^{\prime }+3 y \ln \left (t \right ) = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x +3\right ) y^{\prime \prime }+x y^{\prime }+y \ln \left (x \right ) = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x -2\right ) y^{\prime \prime }+y^{\prime }+\left (x -2\right ) \tan \left (x \right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }-\frac {t}{y} = \frac {1}{\pi }
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y+\frac {y^{3}}{5} = \cos \left (w t \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+\frac {y^{\prime }}{5}+y+\frac {y^{3}}{5} = \cos \left (w t \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+8 y = \cos \left (t \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime \prime }+t y^{\prime \prime }+t^{2} y^{\prime }+t^{2} y = \ln \left (t \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x -4\right ) y^{\prime \prime \prime \prime }+\left (1+x \right ) y^{\prime \prime }+y \tan \left (x \right ) = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x^{2}-2\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+3 y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+4 y = \cos \left (t \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+7 t^{2} y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime \prime }+t y^{\prime \prime }+5 t^{2} y^{\prime }+2 t^{3} y = \ln \left (t \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x -1\right ) y^{\prime \prime \prime \prime }+\left (x +5\right ) y^{\prime \prime }+y \tan \left (x \right ) = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x^{2}-25\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+5 y = 0
\]
|
✗ |
✗ |
✗ |
|