5.3.34 Problems 3301 to 3400

Table 5.113: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

11523

\[ {} \left (1+y\right ) y^{\prime }-y-x = 0 \]

11540

\[ {} \left (a y+b x +c \right ) y^{\prime }+\alpha y+\beta x +\gamma = 0 \]

11543

\[ {} y y^{\prime } x -y^{2}+x y+x^{3}-2 x^{2} = 0 \]

11546

\[ {} x \left (a +y\right ) y^{\prime }+b y+c x = 0 \]

11552

\[ {} x \left (x +2 y-1\right ) y^{\prime }-\left (2 x +y+1\right ) y = 0 \]

11553

\[ {} y \left (2 x -y-1\right )+x \left (2 y-x -1\right ) y^{\prime } = 0 \]

11554

\[ {} \left (2 x y+4 x^{3}\right ) y^{\prime }+y^{2}+112 x^{2} y = 0 \]

11556

\[ {} \left (2+3 x \right ) \left (y-2 x -1\right ) y^{\prime }-y^{2}+x y-7 x^{2}-9 x -3 = 0 \]

11557

\[ {} \left (3+6 x y+x^{2}\right ) y^{\prime }+2 x +2 x y+3 y^{2} = 0 \]

11558

\[ {} \left (a x y+b \,x^{n}\right ) y^{\prime }+\alpha y^{3}+\beta y^{2} = 0 \]

11559

\[ {} \left (B x y+A \,x^{2}+a x +b y+c \right ) y^{\prime }-B g \left (x \right )^{2}+A x y+x \alpha +\beta y+\gamma = 0 \]

11560

\[ {} \left (x^{2} y-1\right ) y^{\prime }+x y^{2}-1 = 0 \]

11561

\[ {} \left (x^{2} y-1\right ) y^{\prime }-x y^{2}+1 = 0 \]

11562

\[ {} \left (x^{2} y-1\right ) y^{\prime }+8 x y^{2}-8 = 0 \]

11566

\[ {} x \left (x y+x^{4}-1\right ) y^{\prime }-y \left (x y-x^{4}-1\right ) = 0 \]

11574

\[ {} \left (x^{n \left (n +1\right )} y-1\right ) y^{\prime }+2 \left (n +1\right )^{2} x^{n -1} \left (x^{n^{2}} y^{2}-1\right ) = 0 \]

11575

\[ {} \left (y-x \right ) \sqrt {x^{2}+1}\, y^{\prime }-a \sqrt {\left (1+y^{2}\right )^{3}} = 0 \]

11578

\[ {} \left (-x +y^{2}\right ) y^{\prime }-y+x^{2} = 0 \]

11579

\[ {} \left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (y+2 x \right ) = 0 \]

11582

\[ {} 2 x y+x^{2}+b +\left (a +x^{2}+y^{2}\right ) y^{\prime } = 0 \]

11583

\[ {} \left (x^{2}+y^{2}+x \right ) y^{\prime }-y = 0 \]

11587

\[ {} \left (x +2 y+y^{2}\right ) y^{\prime }+y \left (1+y\right )+\left (x +y\right )^{2} y^{2} = 0 \]

11590

\[ {} \left (y+3 x -1\right )^{2} y^{\prime }-\left (2 y-1\right ) \left (4 y+6 x -3\right ) = 0 \]

11591

\[ {} 3 \left (-x^{2}+y^{2}\right ) y^{\prime }+2 y^{3}-6 x y \left (1+x \right )-3 \,{\mathrm e}^{x} = 0 \]

11593

\[ {} \left (3 x^{2}+2 x y+4 y^{2}\right ) y^{\prime }+2 x^{2}+6 x y+y^{2} = 0 \]

11594

\[ {} \left (1-3 x +2 y\right )^{2} y^{\prime }-\left (3 y-2 x -4\right )^{2} = 0 \]

11596

\[ {} \left (1-3 x^{2} y+6 y^{2}\right ) y^{\prime }-3 x y^{2}+x = 0 \]

11598

\[ {} \left (a y^{2}+2 b x y+c \,x^{2}\right ) y^{\prime }+b y^{2}+2 c x y+d \,x^{2} = 0 \]

11599

\[ {} \left (b \left (\beta y+x \alpha \right )^{2}-\beta \left (a x +b y\right )\right ) y^{\prime }+a \left (\beta y+x \alpha \right )^{2}-\alpha \left (a x +b y\right ) = 0 \]

11600

\[ {} \left (a y+b x +c \right )^{2} y^{\prime }+\left (\alpha y+\beta x +\gamma \right )^{2} = 0 \]

11601

\[ {} x \left (y^{2}-3 x \right ) y^{\prime }+2 y^{3}-5 x y = 0 \]

11602

\[ {} x \left (y^{2}+x^{2}-a \right ) y^{\prime }-\left (a +x^{2}+y^{2}\right ) y = 0 \]

11604

\[ {} x \left (y^{2}+x^{2} y+x^{2}\right ) y^{\prime }-2 y^{3}-2 x^{2} y^{2}+x^{4} = 0 \]

11607

\[ {} \left (3 x y^{2}-x^{2}\right ) y^{\prime }+y^{3}-2 x y = 0 \]

11613

\[ {} \left (y^{3}-3 x \right ) y^{\prime }-3 y+x^{2} = 0 \]

11615

\[ {} \left (a +x^{2}+y^{2}\right ) y y^{\prime }+\left (y^{2}+x^{2}-a \right ) x = 0 \]

11619

\[ {} \left (3 x^{3}+6 x^{2} y-3 x y^{2}+20 y^{3}\right ) y^{\prime }+4 x^{3}+9 x^{2} y+6 x y^{2}-y^{3} = 0 \]

11620

\[ {} \left (\frac {y^{2}}{b}+\frac {x^{2}}{a}\right ) \left (y y^{\prime }+x \right )+\frac {\left (a -b \right ) \left (y y^{\prime }-x \right )}{a +b} = 0 \]

11621

\[ {} \left (2 a y^{3}+3 a x y^{2}-b \,x^{3}+c \,x^{2}\right ) y^{\prime }-a y^{3}+c y^{2}+3 b \,x^{2} y+2 b \,x^{3} = 0 \]

11625

\[ {} \left (2 x y^{3}+x y+x^{2}\right ) y^{\prime }-x y+y^{2} = 0 \]

11626

\[ {} \left (3 x y^{3}-4 x y+y\right ) y^{\prime }+y^{2} \left (y^{2}-2\right ) = 0 \]

11627

\[ {} \left (7 x y^{3}+y-5 x \right ) y^{\prime }+y^{4}-5 y = 0 \]

11631

\[ {} \left (a x y^{3}+c \right ) x y^{\prime }+\left (b \,x^{3} y+c \right ) y = 0 \]

11632

\[ {} \left (2 x^{3} y^{3}-x \right ) y^{\prime }+2 x^{3} y^{3}-y = 0 \]

11634

\[ {} y \left (\left (b x +a y\right )^{3}+b \,x^{3}\right ) y^{\prime }+x \left (\left (b x +a y\right )^{3}+a y^{3}\right ) = 0 \]

11635

\[ {} \left (x +2 y+2 x^{2} y^{3}+x y^{4}\right ) y^{\prime }+y^{5}+y = 0 \]

11636

\[ {} a \,x^{2} y^{n} y^{\prime }-2 x y^{\prime }+y = 0 \]

11637

\[ {} y^{m} x^{n} \left (a x y^{\prime }+b y\right )+\alpha x y^{\prime }+\beta y = 0 \]

11640

\[ {} \left (2 x^{{5}/{2}} y^{{3}/{2}}+x^{2} y-x \right ) y^{\prime }-x^{{3}/{2}} y^{{5}/{2}}+x y^{2}-y = 0 \]

11643

\[ {} \left (\sqrt {1+y^{2}}+a x \right ) y^{\prime }+\sqrt {x^{2}+1}+a y = 0 \]

11645

\[ {} \left (y \sqrt {x^{2}+y^{2}}+\left (-x^{2}+y^{2}\right ) \sin \left (\alpha \right )-2 x y \cos \left (\alpha \right )\right ) y^{\prime }+x \sqrt {x^{2}+y^{2}}+2 x y \sin \left (\alpha \right )+\left (-x^{2}+y^{2}\right ) \cos \left (\alpha \right ) = 0 \]

11646

\[ {} \left (x \sqrt {x^{2}+y^{2}+1}-y \left (x^{2}+y^{2}\right )\right ) y^{\prime }-y \sqrt {x^{2}+y^{2}+1}-x \left (x^{2}+y^{2}\right ) = 0 \]

11647

\[ {} \left (\frac {\operatorname {e1} \left (x +a \right )}{\left (\left (x +a \right )^{2}+y^{2}\right )^{{3}/{2}}}+\frac {\operatorname {e2} \left (x -a \right )}{\left (\left (x -a \right )^{2}+y^{2}\right )^{{3}/{2}}}\right ) y^{\prime }-y \left (\frac {\operatorname {e1}}{\left (\left (x +a \right )^{2}+y^{2}\right )^{{3}/{2}}}+\frac {\operatorname {e2}}{\left (\left (x -a \right )^{2}+y^{2}\right )^{{3}/{2}}}\right ) = 0 \]

11648

\[ {} \left ({\mathrm e}^{x}+x \,{\mathrm e}^{y}\right ) y^{\prime }+y \,{\mathrm e}^{x}+{\mathrm e}^{y} = 0 \]

11653

\[ {} x \left (y \ln \left (x y\right )+y-a x \right ) y^{\prime }-y \left (a x \ln \left (x y\right )-y+a x \right ) = 0 \]

11655

\[ {} \sin \left (y\right )+y \cos \left (x \right )+\left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime } = 0 \]

11656

\[ {} x y^{\prime } \cot \left (\frac {y}{x}\right )+2 \sin \left (\frac {y}{x}\right ) x -y \cot \left (\frac {y}{x}\right ) = 0 \]

11659

\[ {} y^{\prime } \left (\cos \left (y\right )-\sin \left (\alpha \right ) \sin \left (x \right )\right ) \cos \left (y\right )+\left (\cos \left (x \right )-\sin \left (\alpha \right ) \sin \left (y\right )\right ) \cos \left (x \right ) = 0 \]

11662

\[ {} \left (x \cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime }-\sin \left (x \right ) y+\sin \left (y\right ) = 0 \]

11663

\[ {} \left (x^{2} \cos \left (y\right )+2 \sin \left (x \right ) y\right ) y^{\prime }+2 x \sin \left (y\right )+y^{2} \cos \left (x \right ) = 0 \]

11667

\[ {} y^{\prime } \cos \left (a y\right )-b \left (1-c \cos \left (a y\right )\right ) \sqrt {\cos \left (a y\right )^{2}-1+c \cos \left (a y\right )} = 0 \]

11668

\[ {} \left (x \sin \left (x y\right )+\cos \left (x +y\right )-\sin \left (y\right )\right ) y^{\prime }+y \sin \left (x y\right )+\cos \left (x +y\right )+\cos \left (x \right ) = 0 \]

11670

\[ {} \left (x y^{\prime }-y\right ) \cos \left (\frac {y}{x}\right )^{2}+x = 0 \]

11671

\[ {} \left (y \sin \left (\frac {y}{x}\right )-\cos \left (\frac {y}{x}\right ) x \right ) x y^{\prime }-\left (\cos \left (\frac {y}{x}\right ) x +y \sin \left (\frac {y}{x}\right )\right ) y = 0 \]

11672

\[ {} \left (y f \left (x^{2}+y^{2}\right )-x \right ) y^{\prime }+y+x f \left (x^{2}+y^{2}\right ) = 0 \]

11673

\[ {} f \left (x^{2}+a y^{2}\right ) \left (a y y^{\prime }+x \right )-y-x y^{\prime } = 0 \]

11674

\[ {} {y^{\prime }}^{2}+a y+b \,x^{2} = 0 \]

11685

\[ {} {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

11686

\[ {} {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

11688

\[ {} {y^{\prime }}^{2}+a x y^{\prime }+b y+c \,x^{2} = 0 \]

11690

\[ {} {y^{\prime }}^{2}-2 x^{2} y^{\prime }+2 x y = 0 \]

11692

\[ {} {y^{\prime }}^{2}+\left (y^{\prime }-y\right ) {\mathrm e}^{x} = 0 \]

11693

\[ {} {y^{\prime }}^{2}-2 y y^{\prime }-2 x = 0 \]

11694

\[ {} {y^{\prime }}^{2}-\left (4 y+1\right ) y^{\prime }+\left (4 y+1\right ) y = 0 \]

11695

\[ {} {y^{\prime }}^{2}+a y y^{\prime }-b x -c = 0 \]

11697

\[ {} {y^{\prime }}^{2}-y y^{\prime } x +y^{2} \ln \left (a y\right ) = 0 \]

11700

\[ {} {y^{\prime }}^{2}-2 x^{3} y^{2} y^{\prime }-4 x^{2} y^{3} = 0 \]

11701

\[ {} {y^{\prime }}^{2}-3 x y^{{2}/{3}} y^{\prime }+9 y^{{5}/{3}} = 0 \]

11703

\[ {} 2 {y^{\prime }}^{2}-2 x^{2} y^{\prime }+3 x y = 0 \]

11704

\[ {} 3 {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

11707

\[ {} a {y^{\prime }}^{2}+b \,x^{2} y^{\prime }+c x y = 0 \]

11708

\[ {} a {y^{\prime }}^{2}+y y^{\prime }-x = 0 \]

11709

\[ {} a {y^{\prime }}^{2}-y y^{\prime }-x = 0 \]

11712

\[ {} x {y^{\prime }}^{2}-2 y^{\prime }-y = 0 \]

11713

\[ {} x {y^{\prime }}^{2}+4 y^{\prime }-2 y = 0 \]

11715

\[ {} x {y^{\prime }}^{2}+y y^{\prime }+a = 0 \]

11716

\[ {} x {y^{\prime }}^{2}+y y^{\prime }-x^{2} = 0 \]

11717

\[ {} x {y^{\prime }}^{2}+y y^{\prime }+x^{3} = 0 \]

11718

\[ {} x {y^{\prime }}^{2}+y y^{\prime }-y^{4} = 0 \]

11720

\[ {} x {y^{\prime }}^{2}-y y^{\prime }+a = 0 \]

11721

\[ {} x {y^{\prime }}^{2}-y y^{\prime }+a y = 0 \]

11723

\[ {} x {y^{\prime }}^{2}-2 y y^{\prime }+a = 0 \]

11728

\[ {} \left (1+x \right ) {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

11729

\[ {} \left (3 x +1\right ) {y^{\prime }}^{2}-3 \left (y+2\right ) y^{\prime }+9 = 0 \]

11730

\[ {} \left (5+3 x \right ) {y^{\prime }}^{2}-\left (3 y+x \right ) y^{\prime }+y = 0 \]

11731

\[ {} a x {y^{\prime }}^{2}+\left (b x -a y+c \right ) y^{\prime }-b y = 0 \]

11732

\[ {} a x {y^{\prime }}^{2}-\left (a y+b x -a -b \right ) y^{\prime }+b y = 0 \]

11733

\[ {} \left (\operatorname {a2} x +\operatorname {c2} \right ) {y^{\prime }}^{2}+\left (\operatorname {a1} x +\operatorname {b1} y+\operatorname {c1} \right ) y^{\prime }+\operatorname {a0} x +\operatorname {b0} y+\operatorname {c0} = 0 \]

11735

\[ {} \left (x y^{\prime }+a \right )^{2}-2 a y+x^{2} = 0 \]

11736

\[ {} \left (x y^{\prime }+y+2 x \right )^{2}-4 x y-4 x^{2}-4 a = 0 \]