| # | ODE | Mathematica | Maple | Sympy |
| \[
{} x^{2} {y^{\prime }}^{2}-2 y y^{\prime } x -x^{4}+\left (-x^{2}+1\right ) y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+1\right ) {y^{\prime }}^{2}-2 y y^{\prime } x +y^{2}-1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 y y^{\prime } x -x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+a \right ) {y^{\prime }}^{2}-2 y y^{\prime } x +y^{2}+b = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (2 x^{2}+1\right ) {y^{\prime }}^{2}+\left (y^{2}+2 x y+x^{2}+2\right ) y^{\prime }+2 y^{2}+1 = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+a = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \left (x^{2}-1\right ) {y^{\prime }}^{2}+2 \left (-x^{2}+1\right ) y y^{\prime }+x y^{2}-x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {\mathrm e}^{-2 x} {y^{\prime }}^{2}-\left (y^{\prime }-1\right )^{2}+{\mathrm e}^{-2 y} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left ({y^{\prime }}^{2}+y^{2}\right ) \cos \left (x \right )^{4}-a^{2} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y {y^{\prime }}^{2}+x^{3} y^{\prime }-x^{2} y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (y-2 x \right ) {y^{\prime }}^{2}-2 \left (x -1\right ) y^{\prime }+y-2 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y {y^{\prime }}^{2}-\left (4 x -5\right ) y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 9 y {y^{\prime }}^{2}+4 x^{3} y^{\prime }-4 x^{2} y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (b_{2} y+a_{2} x +c_{2} \right ) {y^{\prime }}^{2}+\left (a_{1} x +b_{1} y+c_{1} \right ) y^{\prime }+a_{0} x +b_{0} y+c_{0} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (a y-x^{2}\right ) {y^{\prime }}^{2}+2 x y {y^{\prime }}^{2}-y^{2} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x y {y^{\prime }}^{2}+\left (x^{22}-y^{2}+a \right ) y^{\prime }-x y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (2 x y-x^{2}\right ) {y^{\prime }}^{2}+2 y y^{\prime } x +2 x y-y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a x y {y^{\prime }}^{2}-\left (a y^{2}+b \,x^{2}+c \right ) y^{\prime }+b x y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{2} {y^{\prime }}^{2}-6 x^{3} y^{\prime }+4 x^{2} y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2} {y^{\prime }}^{2}-4 a y y^{\prime }+4 a^{2}-4 a x +y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2} {y^{\prime }}^{2}+2 y y^{\prime } x +a y^{2}+b x +c = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2} {y^{\prime }}^{2}-2 y y^{\prime } x +a -x^{2}+2 y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2} {y^{\prime }}^{2}+2 a x y y^{\prime }+\left (a -1\right ) b +x^{2} a +\left (1-a \right ) y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (y^{2}-2 a x +a^{2}\right ) {y^{\prime }}^{2}+2 a y y^{\prime }+y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (y^{2}-a^{2} x^{2}\right ) {y^{\prime }}^{2}+2 y y^{\prime } x +\left (-a^{2}+1\right ) x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (\left (1-a \right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}+2 a x y y^{\prime }+x^{2}+\left (1-a \right ) y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-a^{2}+1\right ) y^{2} {y^{\prime }}^{2}-2 a^{2} x y y^{\prime }+y^{2}-a^{2} x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (a -b \right ) y^{2} {y^{\prime }}^{2}-2 b x y y^{\prime }-a b -b \,x^{2}+a y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (a y^{2}+b x +c \right ) {y^{\prime }}^{2}-b y y^{\prime }+d y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (a y-b x \right )^{2} \left (a^{2} {y^{\prime }}^{2}+b^{2}\right )-c^{2} \left (a y^{\prime }+b \right )^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (\operatorname {b2} y+\operatorname {a2} x +\operatorname {c2} \right )^{2} {y^{\prime }}^{2}+\left (\operatorname {a1} x +\operatorname {b1} y+\operatorname {c1} \right ) y^{\prime }+\operatorname {b0} y+\operatorname {a0} +\operatorname {c0} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x y^{2} {y^{\prime }}^{2}-\left (y^{3}+x^{3}-a \right ) y^{\prime }+x^{2} y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} \left (x y^{2}-1\right ) {y^{\prime }}^{2}+2 x^{2} y^{2} \left (y-x \right ) y^{\prime }-y^{2} \left (x^{2} y-1\right ) = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (y^{4}-a^{2} x^{2}\right ) {y^{\prime }}^{2}+2 a^{2} x y y^{\prime }+y^{2} \left (y^{2}-a^{2}\right ) = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (y^{4}+x^{2} y^{2}-x^{2}\right ) {y^{\prime }}^{2}+2 y y^{\prime } x -y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 9 y^{4} \left (x^{2}-1\right ) {y^{\prime }}^{2}-6 x y^{5} y^{\prime }-4 x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} \left (x^{2} y^{4}-1\right ) {y^{\prime }}^{2}+2 x^{3} y^{3} \left (-x^{2}+y^{2}\right ) y^{\prime }-y^{2} \left (x^{4} y^{2}-1\right ) = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (a^{2} \sqrt {x^{2}+y^{2}}-x^{2}\right ) {y^{\prime }}^{2}+2 y y^{\prime } x +a^{2} \sqrt {x^{2}+y^{2}}-y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (a \left (x^{2}+y^{2}\right )^{{3}/{2}}-x^{2}\right ) {y^{\prime }}^{2}+2 y y^{\prime } x +a \left (x^{2}+y^{2}\right )^{{3}/{2}}-y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2} \sin \left (y\right )+2 x y^{\prime } \cos \left (y\right )^{3}-\sin \left (y\right ) \cos \left (y\right )^{4} = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} f \left (x^{2}+y^{2}\right ) \left (1+{y^{\prime }}^{2}\right )-\left (x y^{\prime }-y\right )^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+y^{2}\right ) f \left (\frac {x}{\sqrt {x^{2}+y^{2}}}\right ) \left (1+{y^{\prime }}^{2}\right )-\left (x y^{\prime }-y\right )^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+y^{2}\right ) f \left (\frac {y}{\sqrt {x^{2}+y^{2}}}\right ) \left (1+{y^{\prime }}^{2}\right )-\left (x y^{\prime }-y\right )^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}+x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}-\left (x +5\right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}-y^{4} y^{\prime } x -y^{5} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}+a {y^{\prime }}^{2}+b y+a b x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}+x {y^{\prime }}^{2}-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2}-\left (x^{2}+x y^{2}+y^{4}\right ) {y^{\prime }}^{2}+\left (x y^{6}+x^{2} y^{4}+y^{2} x^{3}\right ) y^{\prime }-x^{3} y^{6} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} a {y^{\prime }}^{3}+b {y^{\prime }}^{2}+c y^{\prime }-y-d = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+a = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}-x +3 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 8 x {y^{\prime }}^{3}-12 y {y^{\prime }}^{2}+9 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3} x^{3}-3 y {y^{\prime }}^{2} x^{2}+\left (3 x y^{2}+x^{6}\right ) y^{\prime }-y^{3}-2 x^{5} y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} 2 \left (x y^{\prime }+y\right )^{3}-y y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3} \sin \left (x \right )-\left (\sin \left (x \right ) y-\cos \left (x \right )^{2}\right ) {y^{\prime }}^{2}-\left (y \cos \left (x \right )^{2}+\sin \left (x \right )\right ) y^{\prime }+\sin \left (x \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2} {y^{\prime }}^{3}+2 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 16 y^{2} {y^{\prime }}^{3}+2 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{2} {y^{\prime }}^{3}-y^{3} {y^{\prime }}^{2}+x \left (x^{2}+1\right ) y^{\prime }-x^{2} y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{7} y^{2} {y^{\prime }}^{3}-\left (3 x^{6} y^{3}-1\right ) {y^{\prime }}^{2}+3 x^{5} y^{4} y^{\prime }-x^{4} y^{5} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{4}+3 \left (x -1\right ) {y^{\prime }}^{2}-3 \left (2 y-1\right ) y^{\prime }+3 x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{4}-4 y \left (-2 y+x y^{\prime }\right )^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{r}-a y^{s}-b \,x^{\frac {r s}{r -s}} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{n}-f \left (x \right )^{n} \left (y-a \right )^{n +1} \left (y-b \right )^{n -1} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a {y^{\prime }}^{m}+b {y^{\prime }}^{n}-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{n -1} {y^{\prime }}^{n}-n x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sqrt {1+{y^{\prime }}^{2}}+x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sqrt {1+{y^{\prime }}^{2}}+x {y^{\prime }}^{2}+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \sqrt {1+{y^{\prime }}^{2}}-a y y^{\prime }-a x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a y \sqrt {1+{y^{\prime }}^{2}}-2 y y^{\prime } x +y^{2}-x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} f \left (x^{2}+y^{2}\right ) \sqrt {1+{y^{\prime }}^{2}}-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a \left (1+{y^{\prime }}^{3}\right )^{{1}/{3}}+b x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sin \left (y^{\prime }\right )+y^{\prime }-x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a \cos \left (y^{\prime }\right )+b y^{\prime }+x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2} \sin \left (y^{\prime }\right )-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+{y^{\prime }}^{2}\right ) \sin \left (x y^{\prime }-y\right )^{2}-1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+{y^{\prime }}^{2}\right ) \left (\arctan \left (y^{\prime }\right )+a x \right )+y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a \,x^{n} f \left (y^{\prime }\right )+x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} f \left (x {y^{\prime }}^{2}\right )+2 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} f \left (x -\frac {3 {y^{\prime }}^{2}}{2}\right )+{y^{\prime }}^{3}-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = F \left (\frac {y}{x +a}\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = 2 x +F \left (y-x^{2}\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = -\frac {a x}{2}+F \left (y+\frac {x^{2} a}{4}+\frac {b x}{2}\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = F \left (y \,{\mathrm e}^{-b x}\right ) {\mathrm e}^{b x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {1+2 F \left (\frac {4 x^{2} y+1}{4 x^{2}}\right ) x}{2 x^{3}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {1+F \left (\frac {a x y+1}{a x}\right ) a \,x^{2}}{a \,x^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = -\frac {\left (x^{2} a -2 F \left (y+\frac {a \,x^{4}}{8}\right )\right ) x}{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {2 a}{y+2 F \left (y^{2}-4 a x \right ) a}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = F \left (\ln \left (\ln \left (y\right )\right )-\ln \left (x \right )\right ) y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {F \left (\frac {y}{\sqrt {x^{2}+1}}\right ) x}{\sqrt {x^{2}+1}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {\left (x^{{3}/{2}}+2 F \left (y-\frac {x^{3}}{6}\right )\right ) \sqrt {x}}{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {x +F \left (-\left (x -y\right ) \left (x +y\right )\right )}{y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {F \left (-\frac {-1+y \ln \left (x \right )}{y}\right ) y^{2}}{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {x}{-y+F \left (x^{2}+y^{2}\right )}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {F \left (\frac {a y^{2}+b \,x^{2}}{a}\right ) x}{\sqrt {a}\, y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {6 x^{3}+5 \sqrt {x}+5 F \left (y-\frac {2 x^{3}}{5}-2 \sqrt {x}\right )}{5 x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {F \left (y^{{3}/{2}}-\frac {3 \,{\mathrm e}^{x}}{2}\right ) {\mathrm e}^{x}}{\sqrt {y}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {F \left (-\frac {-y^{2}+b}{x^{2}}\right ) x}{y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {F \left (\frac {x y^{2}+1}{x}\right )}{y x^{2}}
\]
|
✓ |
✓ |
✗ |
|