5.3.63 Problems 6201 to 6300

Table 5.171: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

19573

\[ {} y^{\prime \prime }-f \left (x \right ) y^{\prime }+\left (f \left (x \right )-1\right ) y = 0 \]

19607

\[ {} x y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }+x^{3} y = 0 \]

19608

\[ {} y^{\prime \prime }+3 x y^{\prime }+x^{2} y = 0 \]

19630

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}} \]

19638

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = \left (x^{2}-1\right )^{2} \]

19639

\[ {} \left (x^{2}+x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-\left (x +2\right ) y = x \left (1+x \right )^{2} \]

19640

\[ {} -y+x y^{\prime }+\left (1-x \right ) y^{\prime \prime } = \left (1-x \right )^{2} \]

19641

\[ {} y-y^{\prime } \left (1+x \right )+x y^{\prime \prime } = x^{2} {\mathrm e}^{2 x} \]

19695

\[ {} x y^{\prime } = y \]

19696

\[ {} x^{2} y^{\prime } = y \]

19700

\[ {} y+x y^{\prime }+y^{\prime \prime } = 0 \]

19706

\[ {} x^{3} \left (x -1\right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+3 x y = 0 \]

19707

\[ {} x^{2} \left (x^{2}-1\right )^{2} y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+2 y = 0 \]

19708

\[ {} x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime } = 0 \]

19713

\[ {} x^{3} y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

19714

\[ {} x^{4} y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

19715

\[ {} x^{3} y^{\prime \prime }+\left (-1+\cos \left (2 x \right )\right ) y^{\prime }+2 x y = 0 \]

19722

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}} = 0 \]

19723

\[ {} y^{\prime \prime }+\frac {n y^{\prime }}{x^{2}}+\frac {q y}{x^{3}} = 0 \]

19744

\[ {} x y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }-\left (9+4 x \right ) y = 0 \]

19745

\[ {} x y^{\prime \prime }+\left (2 x +3\right ) y^{\prime }+\left (x +3\right ) y = 3 \,{\mathrm e}^{-x} \]

19746

\[ {} y^{\prime \prime }+x^{2} y = 0 \]

19773

\[ {} x^{\prime \prime }+\left (5 x^{4}-9 x^{2}\right ) x^{\prime }+x^{5} = 0 \]

19780

\[ {} x^{\prime } = x^{2}-3 x+2 \]

19782

\[ {} x^{\prime } = \left (x-1\right )^{2} \]

19784

\[ {} x^{\prime } = 2 \sqrt {x} \]

19791

\[ {} 2 t +3 x+\left (3 t -x\right ) x^{\prime } = t^{2} \]

19817

\[ {} x^{2} y^{\prime \prime }-\frac {x^{2} {y^{\prime }}^{2}}{2 y}+4 x y^{\prime }+4 y = 0 \]

19820

\[ {} \sin \left (x \right ) y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+n y \sin \left (x \right ) = 0 \]

19822

\[ {} v^{\prime \prime } = \left (\frac {1}{v}+{v^{\prime }}^{4}\right )^{{1}/{3}} \]

19824

\[ {} \sqrt {y^{\prime }+y} = \left (y^{\prime \prime }+2 x \right )^{{1}/{4}} \]

19826

\[ {} \sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0 \]

19833

\[ {} 2 a x +b y+\left (2 c y+b x +e \right ) y^{\prime } = g \]

19835

\[ {} y y^{\prime }+x = m y \]

19836

\[ {} \frac {2 x}{y^{3}}+\left (\frac {1}{y^{2}}-\frac {3 x^{2}}{y^{4}}\right ) y^{\prime } = 0 \]

19837

\[ {} \left (T+\frac {1}{\sqrt {t^{2}-T^{2}}}\right ) T^{\prime } = \frac {T}{t \sqrt {t^{2}-T^{2}}}-t \]

19845

\[ {} x {y^{\prime }}^{2}+2 y^{\prime }-y = 0 \]

19848

\[ {} \sqrt {t^{2}+T} = T^{\prime } \]

19853

\[ {} y^{\prime \prime } = \frac {m \sqrt {1+{y^{\prime }}^{2}}}{k} \]

19854

\[ {} \phi ^{\prime \prime } = \frac {4 \pi n c}{\sqrt {v_{0}^{2}+\frac {2 e \left (\phi -V_{0} \right )}{m}}} \]

19865

\[ {} 4 {y^{\prime }}^{3} y-2 x^{2} {y^{\prime }}^{2}+4 y y^{\prime } x +x^{3} = 16 y^{2} \]

19883

\[ {} y^{\prime \prime } = c \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

19886

\[ {} 1+{y^{\prime }}^{2}+\frac {m y^{\prime \prime }}{\sqrt {1+{y^{\prime }}^{2}}} = 0 \]

19887

\[ {} y = x y^{\prime }+y^{\prime }-{y^{\prime }}^{3} \]

19895

\[ {} y^{\prime \prime }-2 y y^{\prime } = 0 \]

19896

\[ {} y^{\prime \prime }-{y^{\prime }}^{2}-{y^{\prime }}^{3} y = 0 \]

19897

\[ {} \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = r y^{\prime \prime } \]

19898

\[ {} y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime \prime }}^{2}+3 y^{\prime \prime } {y^{\prime }}^{2}-2 {y^{\prime }}^{4}-x {y^{\prime }}^{5} = 0 \]

19899

\[ {} \left (1+y^{2}\right ) y^{\prime \prime }-2 y {y^{\prime }}^{2}-2 \left (1+y^{2}\right ) y^{\prime } = y^{2} \left (1+y^{2}\right ) \]

19900

\[ {} y^{2} y^{\prime \prime \prime }-\left (3 y y^{\prime }+2 x y^{2}\right ) y^{\prime \prime }+\left (2 {y^{\prime }}^{2}+2 y y^{\prime } x +3 x^{2} y^{2}\right ) y^{\prime }+x^{3} y^{3} = 0 \]

19904

\[ {} v^{\prime \prime }+\frac {2 x v^{\prime }}{x^{2}+1}+\frac {v}{\left (x^{2}+1\right )^{2}} = 0 \]

19920

\[ {} \sqrt {2 a y-y^{2}}\, \csc \left (x \right )+y \tan \left (x \right ) y^{\prime } = 0 \]

19922

\[ {} x^{3}-3 x^{2} y+5 x y^{2}-7 y^{3}+\left (y^{4}+2 y^{2}-x^{3}+5 x^{2} y-21 x y^{2}\right ) y^{\prime } = 0 \]

19923

\[ {} x^{3}+4 x y+y^{2}+\left (2 x^{2}+2 x y+4 y^{3}\right ) y^{\prime } = 0 \]

19926

\[ {} x \left (x -2 y\right ) y^{\prime }+x^{2}+2 y^{2} = 0 \]

19929

\[ {} \left (x^{2}+2 x y\right ) y^{\prime }-3 x^{2}+2 x y-y^{2} = 0 \]

19933

\[ {} \left (6 x -5 y+4\right ) y^{\prime } = 1+2 x -y \]

19934

\[ {} \left (5 x -2 y+7\right ) y^{\prime } = x -3 y+2 \]

19976

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 2 x \]

19977

\[ {} 2 y+4 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = x \]

19978

\[ {} y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+\csc \left (x \right )^{2} y = \cos \left (x \right ) \]

19979

\[ {} \left (x^{2}-x \right ) y^{\prime \prime }+\left (3 x -2\right ) y^{\prime }+y = 0 \]

19980

\[ {} \left (3 x^{2}+x \right ) y^{\prime \prime }+2 \left (1+6 x \right ) y^{\prime }+6 y = \sin \left (x \right ) \]

19981

\[ {} \left (x^{3}+x^{2}-3 x +1\right ) y^{\prime \prime \prime }+\left (9 x^{2}+6 x -9\right ) y^{\prime \prime }+\left (18 x +6\right ) y^{\prime }+6 y = x^{3} \]

19987

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

19988

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = 1 \]

20019

\[ {} \left (3 x +4 y\right ) y^{\prime }+y-2 x = 0 \]

20021

\[ {} \left (y-3 x +3\right ) y^{\prime } = 2 y-x -4 \]

20022

\[ {} x^{2}-4 x y-2 y^{2}+\left (y^{2}-4 x y-2 x^{2}\right ) y^{\prime } = 0 \]

20023

\[ {} x +y y^{\prime }+\frac {x y^{\prime }-y}{x^{2}+y^{2}} = 0 \]

20025

\[ {} 2 a x +b y+g +\left (2 c y+b x +e \right ) y^{\prime } = 0 \]

20026

\[ {} \left (2 x^{2} y+4 x^{3}-12 x y^{2}+3 y^{2}-x \,{\mathrm e}^{y}+{\mathrm e}^{2 x}\right ) y^{\prime }+12 x^{2} y+2 x y^{2}+4 x^{3}-4 y^{3}+2 y \,{\mathrm e}^{2 x}-{\mathrm e}^{y} = 0 \]

20036

\[ {} 3 x^{2} y^{4}+2 x y+\left (2 x^{3} y^{3}-x^{2}\right ) y^{\prime } = 0 \]

20039

\[ {} 2 x^{2} y-3 y^{4}+\left (3 x^{3}+2 x y^{3}\right ) y^{\prime } = 0 \]

20040

\[ {} y^{2}+2 x^{2} y+\left (2 x^{3}-x y\right ) y^{\prime } = 0 \]

20053

\[ {} x y^{\prime }-y = x \sqrt {x^{2}+y^{2}} \]

20059

\[ {} y^{\prime }+\frac {y}{\sqrt {-x^{2}+1}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \]

20061

\[ {} x \left (-a^{2}+x^{2}+y^{2}\right )+y \left (x^{2}-y^{2}-b^{2}\right ) y^{\prime } = 0 \]

20066

\[ {} y y^{\prime }+x = m \left (x y^{\prime }-y\right ) \]

20070

\[ {} y+\left (a \,x^{2} y^{n}-2 x \right ) y^{\prime } = 0 \]

20071

\[ {} \left (1-3 x^{2} y+6 y^{2}\right ) y^{\prime } = 3 x y^{2}-x^{2} \]

20072

\[ {} y \left (a^{2}+x^{2}+y^{2}\right ) y^{\prime }+x \left (-a^{2}+x^{2}+y^{2}\right ) = 0 \]

20084

\[ {} y^{\prime }+\frac {n y}{x} = a \,x^{-n} \]

20092

\[ {} x -y y^{\prime } = a {y^{\prime }}^{2} \]

20093

\[ {} y = -a y^{\prime }+\frac {c +a \arcsin \left (y^{\prime }\right )}{\sqrt {1-{y^{\prime }}^{2}}} \]

20094

\[ {} 4 y = {y^{\prime }}^{2}+x^{2} \]

20103

\[ {} x^{2} \left (y-x y^{\prime }\right ) = y {y^{\prime }}^{2} \]

20104

\[ {} y = x y^{\prime }+\arcsin \left (y^{\prime }\right ) \]

20105

\[ {} {\mathrm e}^{4 x} \left (y^{\prime }-1\right )+{\mathrm e}^{2 y} {y^{\prime }}^{2} = 0 \]

20109

\[ {} y = y^{\prime } \left (x -b \right )+\frac {a}{y^{\prime }} \]

20113

\[ {} a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y = 0 \]

20114

\[ {} \left (x y^{\prime }-y\right )^{2} = a \left (1+{y^{\prime }}^{2}\right ) \left (x^{2}+y^{2}\right )^{{3}/{2}} \]

20115

\[ {} \left (x y^{\prime }-y\right )^{2} = {y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+1 \]

20117

\[ {} \left (x^{2}+y^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (y y^{\prime }+x \right )+\left (y y^{\prime }+x \right )^{2} = 0 \]

20120

\[ {} \left (x y^{\prime }-y\right ) \left (y y^{\prime }+x \right ) = h^{2} y^{\prime } \]

20125

\[ {} {y^{\prime }}^{3}-4 y y^{\prime } x +8 y^{2} = 0 \]

20127

\[ {} {y^{\prime }}^{3}+m {y^{\prime }}^{2} = a \left (y+m x \right ) \]

20128

\[ {} {\mathrm e}^{3 x} \left (y^{\prime }-1\right )+{\mathrm e}^{2 y} {y^{\prime }}^{3} = 0 \]

20129

\[ {} \left (1-y^{2}+\frac {y^{4}}{x^{2}}\right ) {y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+\frac {y^{2}}{x^{2}} = 0 \]

20131

\[ {} y = x y^{\prime }+\frac {m}{y^{\prime }} \]