5.3.62 Problems 6101 to 6200

Table 5.169: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

19223

\[ {} x^{2} {y^{\prime }}^{2}-2 y y^{\prime } x +y^{2} = x^{2} y^{2}+x^{4} \]

19227

\[ {} {y^{\prime }}^{3}-x^{3} \left (1-y^{\prime }\right ) = 0 \]

19232

\[ {} {y^{\prime }}^{4} = 4 y \left (-2 y+x y^{\prime }\right )^{2} \]

19234

\[ {} y = \frac {k \left (y y^{\prime }+x \right )}{\sqrt {1+{y^{\prime }}^{2}}} \]

19235

\[ {} x = y y^{\prime }+a {y^{\prime }}^{2} \]

19236

\[ {} y = x {y^{\prime }}^{2}+{y^{\prime }}^{3} \]

19238

\[ {} y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3} \]

19239

\[ {} {y^{\prime }}^{2} \left (x^{2}-1\right )-2 y y^{\prime } x +y^{2}-1 = 0 \]

19240

\[ {} {y^{\prime }}^{2}+2 x y^{\prime }+2 y = 0 \]

19251

\[ {} {y^{\prime }}^{4} = 4 y \left (-2 y+x y^{\prime }\right )^{2} \]

19253

\[ {} y = {y^{\prime }}^{2}-x y^{\prime }+\frac {x^{3}}{2} \]

19255

\[ {} {y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \]

19257

\[ {} y^{\prime \prime } = \frac {1}{\sqrt {y}} \]

19258

\[ {} a^{3} y^{\prime \prime \prime } y^{\prime \prime } = \sqrt {1+c^{2} {y^{\prime \prime }}^{2}} \]

19260

\[ {} 2 \left (2 a -y\right ) y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

19261

\[ {} y^{\prime \prime }-x y^{\prime \prime \prime }+{y^{\prime \prime \prime }}^{3} = 0 \]

19262

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = \ln \left (y\right ) y^{2} \]

19263

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

19264

\[ {} x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

19265

\[ {} n \,x^{3} y^{\prime \prime } = \left (y-x y^{\prime }\right )^{2} \]

19266

\[ {} y^{2} \left (x^{2} y^{\prime \prime }-x y^{\prime }+y\right ) = x^{3} \]

19267

\[ {} x^{2} y^{2} y^{\prime \prime }-3 x y^{2} y^{\prime }+4 y^{3}+x^{6} = 0 \]

19268

\[ {} y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime }-x y^{2} = 0 \]

19269

\[ {} x \left (2 x y+x^{2} y^{\prime }\right ) y^{\prime \prime }+4 x {y^{\prime }}^{2}+8 y y^{\prime } x +4 y^{2}-1 = 0 \]

19270

\[ {} x \left (x y+1\right ) y^{\prime \prime }+x^{2} {y^{\prime }}^{2}+\left (4 x y+2\right ) y^{\prime }+y^{2}+1 = 0 \]

19271

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}-{y^{\prime }}^{4} = 0 \]

19272

\[ {} a^{2} y^{\prime \prime } = 2 x \sqrt {1+{y^{\prime }}^{2}} \]

19273

\[ {} x^{2} y y^{\prime \prime }+x^{2} {y^{\prime }}^{2}-5 y y^{\prime } x = 4 y^{2} \]

19274

\[ {} \left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2}+\left (1-\ln \left (y\right )\right ) y y^{\prime \prime } = 0 \]

19275

\[ {} 5 {y^{\prime \prime \prime }}^{2}-3 y^{\prime \prime } y^{\prime \prime \prime \prime } = 0 \]

19276

\[ {} 40 {y^{\prime \prime \prime }}^{3}-45 y^{\prime \prime } y^{\prime \prime \prime } y^{\prime \prime \prime \prime }+9 {y^{\prime \prime }}^{2} y^{\left (5\right )} = 0 \]

19277

\[ {} {y^{\prime \prime }}^{2}+2 x y^{\prime \prime }-y^{\prime } = 0 \]

19278

\[ {} {y^{\prime \prime }}^{2}-2 x y^{\prime \prime }-y^{\prime } = 0 \]

19281

\[ {} n \left (n +1\right ) y-2 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

19283

\[ {} \sin \left (x \right )^{2} y^{\prime \prime } = 2 y \]

19285

\[ {} -y+x y^{\prime }-y^{\prime \prime }+x y^{\prime \prime \prime } = 0 \]

19286

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime \prime }-x y^{\prime \prime }+y^{\prime } = 0 \]

19288

\[ {} y^{\prime \prime }+\frac {x y^{\prime }}{1-x}-\frac {y}{1-x} = x -1 \]

19289

\[ {} -2 x y+y^{\prime } \left (x^{2}+2\right )-2 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime \prime \prime } = x^{4}+12 \]

19292

\[ {} y^{\prime \prime }+\frac {y}{x^{2} \ln \left (x \right )} = {\mathrm e}^{x} \left (\frac {2}{x}+\ln \left (x \right )\right ) \]

19294

\[ {} \left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y = 0 \]

19295

\[ {} \sin \left (x \right )^{2} y^{\prime \prime }+\sin \left (x \right ) \cos \left (x \right ) y^{\prime } = y \]

19317

\[ {} \left (1+x \right )^{2} y^{\prime \prime }+y^{\prime } \left (1+x \right )+y = 4 \cos \left (\ln \left (1+x \right )\right ) \]

19320

\[ {} y^{\prime \prime }+\frac {2 p y^{\prime }}{x}+y = 0 \]

19322

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (2 x \right ) \]

19323

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

19326

\[ {} \left [y^{\prime }\left (x \right ) = \frac {y \left (x \right )^{2}}{z \left (x \right )}, z^{\prime }\left (x \right ) = \frac {y \left (x \right )}{2}\right ] \]

19327

\[ {} \left [y^{\prime }\left (x \right ) = 1-\frac {1}{z \left (x \right )}, z^{\prime }\left (x \right ) = \frac {1}{y \left (x \right )-x}\right ] \]

19329

\[ {} y^{\prime \prime } = x +y^{2} \]

19330

\[ {} y^{\prime \prime }+2 y^{\prime }+y^{2} = 0 \]

19332

\[ {} \left [y^{\prime }\left (x \right ) = \frac {y \left (x \right )^{2}}{z \left (x \right )}, z^{\prime }\left (x \right ) = \frac {z \left (x \right )^{2}}{y \left (x \right )}\right ] \]

19338

\[ {} \left [y^{\prime }\left (x \right )+\frac {2 z \left (x \right )}{x^{2}} = 1, z^{\prime }\left (x \right )+y \left (x \right ) = x\right ] \]

19348

\[ {} x y^{\prime }+y = y^{\prime } \sqrt {1-x^{2} y^{2}} \]

19397

\[ {} x y^{\prime } = \sqrt {x^{2}+y^{2}} \]

19405

\[ {} y^{\prime } = \frac {x +y-1}{x +4 y+2} \]

19411

\[ {} \sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

19412

\[ {} y-x^{3}+\left (y^{3}+x \right ) y^{\prime } = 0 \]

19415

\[ {} \left (\sin \left (x \right ) \sin \left (y\right )-x \,{\mathrm e}^{y}\right ) y^{\prime } = {\mathrm e}^{y}+\cos \left (x \right ) \cos \left (y\right ) \]

19418

\[ {} 2 x y^{3}+y \cos \left (x \right )+\left (3 x^{2} y^{2}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

19420

\[ {} 2 x y^{4}+\sin \left (y\right )+\left (4 x^{2} y^{3}+x \cos \left (y\right )\right ) y^{\prime } = 0 \]

19424

\[ {} {\mathrm e}^{y^{2}}-\csc \left (y\right ) \csc \left (x \right )^{2}+\left (2 x y \,{\mathrm e}^{y^{2}}-\csc \left (y\right ) \cot \left (y\right ) \cot \left (x \right )\right ) y^{\prime } = 0 \]

19428

\[ {} \frac {y-x y^{\prime }}{\left (x +y\right )^{2}}+y^{\prime } = 1 \]

19430

\[ {} \left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0 \]

19431

\[ {} x y-1+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

19435

\[ {} y+\left (x -2 x^{2} y^{3}\right ) y^{\prime } = 0 \]

19438

\[ {} y \ln \left (y\right )-2 x y+\left (x +y\right ) y^{\prime } = 0 \]

19439

\[ {} y^{2}+x y+1+\left (x^{2}+x y+1\right ) y^{\prime } = 0 \]

19449

\[ {} y-x y^{2}+\left (x^{2} y^{2}+x \right ) y^{\prime } = 0 \]

19450

\[ {} x y^{\prime }-y = x^{2} y^{4} \left (x y^{\prime }+y\right ) \]

19472

\[ {} y^{\prime } \sin \left (2 x \right ) = 2 y+2 \cos \left (x \right ) \]

19473

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

19477

\[ {} 2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

19478

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

19481

\[ {} y y^{\prime \prime } = y^{2} y^{\prime }+{y^{\prime }}^{2} \]

19482

\[ {} y^{\prime \prime } = {\mathrm e}^{y} y^{\prime } \]

19484

\[ {} y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

19485

\[ {} y y^{\prime \prime } = {y^{\prime }}^{2} \]

19488

\[ {} x y^{\prime } = \sqrt {x^{2}+y^{2}} \]

19489

\[ {} y^{2} = \left (x^{3}-x y\right ) y^{\prime } \]

19491

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2}-2 y y^{\prime } = 0 \]

19494

\[ {} \left ({\mathrm e}^{x}-3 x^{2} y^{2}\right ) y^{\prime }+y \,{\mathrm e}^{x} = 2 x y^{3} \]

19501

\[ {} y^{2} {\mathrm e}^{x y}+\cos \left (x \right )+\left ({\mathrm e}^{x y}+x y \,{\mathrm e}^{x y}\right ) y^{\prime } = 0 \]

19506

\[ {} {\mathrm e}^{x} \sin \left (y\right )+{\mathrm e}^{x} \cos \left (y\right ) y^{\prime } = y \sin \left (x y\right )+x \sin \left (x y\right ) y^{\prime } \]

19508

\[ {} \left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime \prime } = 2 x y-{\mathrm e}^{y}-x \]

19516

\[ {} \frac {3 y^{2}}{x^{2}+3 x}+\left (2 y \ln \left (\frac {5 x}{x +3}\right )+3 \sin \left (y\right )\right ) y^{\prime } = 0 \]

19520

\[ {} 3 x^{2} y-y^{3}-\left (3 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

19524

\[ {} 3 x^{2} {\mathrm e}^{y}-2 x +\left (x^{3} {\mathrm e}^{y}-\sin \left (y\right )\right ) y^{\prime } = 0 \]

19525

\[ {} y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

19533

\[ {} y^{\prime \prime } = 2 {y^{\prime }}^{3} y \]

19544

\[ {} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

19557

\[ {} y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

19562

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

19564

\[ {} y^{\prime \prime }-\frac {x y^{\prime }}{x -1}+\frac {y}{x -1} = 0 \]

19566

\[ {} x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

19567

\[ {} y^{\prime \prime }-x f \left (x \right ) y^{\prime }+f \left (x \right ) y = 0 \]

19568

\[ {} x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

19569

\[ {} x y^{\prime \prime }-\left (x +n \right ) y^{\prime }+n y = 0 \]

19570

\[ {} y-y^{\prime } \left (1+x \right )+x y^{\prime \prime } = 0 \]

19571

\[ {} x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0 \]

19572

\[ {} 3 y-\left (x +3\right ) y^{\prime }+x y^{\prime \prime } = 0 \]