4.3.68 Problems 6701 to 6800

Table 4.499: Second order ode

#

ODE

Mathematica

Maple

Sympy

19001

\[ {} 6 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

19002

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = t^{2} {\mathrm e}^{t}+7 \]

19003

\[ {} y^{\prime \prime }-5 y^{\prime }-6 y = t^{2}+7 \]

19004

\[ {} y^{\prime \prime }+4 y = 3 \,{\mathrm e}^{-2 t} \sin \left (2 t \right ) \]

19005

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = t \cos \left (2 t \right ) \]

19008

\[ {} y^{\prime \prime }+16 y = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

19009

\[ {} y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]

19010

\[ {} y^{\prime \prime }+4 y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t \end {array}\right . \]

19011

\[ {} y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]

19012

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = t \]

19013

\[ {} y^{\prime \prime }-8 y^{\prime }+25 y = 0 \]

19014

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

19015

\[ {} y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]

19016

\[ {} y^{\prime \prime }+4 y^{\prime }+29 y = {\mathrm e}^{-2 t} \sin \left (5 t \right ) \]

19017

\[ {} y^{\prime \prime }+w^{2} y = \cos \left (2 t \right ) \]

19018

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = \cos \left (t \right ) \]

19019

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{-t} \]

19020

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 18 \,{\mathrm e}^{-t} \]

19035

\[ {} y^{\prime \prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}\le t \end {array}\right . \]

19036

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 1 & \pi \le t \le 2 \pi \\ 0 & t \le 2 \pi \end {array}\right . \]

19037

\[ {} y^{\prime \prime }+4 y = \sin \left (t \right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \sin \left (t \right ) \]

19038

\[ {} y^{\prime \prime }+4 y = \sin \left (t \right )-\sin \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \]

19039

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <10 \\ 0 & 10\le t \end {array}\right . \]

19040

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \operatorname {Heaviside}\left (t -2\right ) \]

19041

\[ {} y^{\prime \prime }+y = \operatorname {Heaviside}\left (t -3 \pi \right ) \]

19042

\[ {} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = t -\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (t -\frac {\pi }{2}\right ) \]

19043

\[ {} y^{\prime \prime }+y = \left \{\begin {array}{cc} \frac {t}{2} & 0\le t <6 \\ 3 & 6\le t \end {array}\right . \]

19044

\[ {} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

19045

\[ {} y^{\prime \prime }+4 y = \operatorname {Heaviside}\left (t -\pi \right )-\operatorname {Heaviside}\left (t -3 \pi \right ) \]

19048

\[ {} u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \frac {\left (\left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right .\right )}{2} \]

19049

\[ {} u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right . \]

19050

\[ {} u^{\prime \prime }+\frac {u^{\prime }}{4}+u = 2 \left (\left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right .\right ) \]

19051

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = \delta \left (t -\pi \right ) \]

19052

\[ {} y^{\prime \prime }+4 y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \]

19053

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \delta \left (t -\pi \right )+\operatorname {Heaviside}\left (t -10\right ) \]

19054

\[ {} y^{\prime \prime }-y = -20 \delta \left (t -3\right ) \]

19055

\[ {} y^{\prime \prime }+2 y^{\prime }+3 y = \sin \left (t \right )+\delta \left (t -3 \pi \right ) \]

19056

\[ {} y^{\prime \prime }+4 y = \delta \left (t -4 \pi \right ) \]

19057

\[ {} y^{\prime \prime }+y = \delta \left (t -2 \pi \right ) \cos \left (t \right ) \]

19058

\[ {} y^{\prime \prime }+4 y = 2 \delta \left (t -\frac {\pi }{4}\right ) \]

19059

\[ {} y^{\prime \prime }+y = \operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )+3 \delta \left (t -\frac {3 \pi }{2}\right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \]

19060

\[ {} 2 y^{\prime \prime }+y^{\prime }+6 y = \delta \left (t -\frac {\pi }{6}\right ) \sin \left (t \right ) \]

19061

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = \cos \left (t \right )+\delta \left (t -\frac {\pi }{2}\right ) \]

19063

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{2}+y = \delta \left (t -1\right ) \]

19064

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{4}+y = \delta \left (t -1\right ) \]

19065

\[ {} y^{\prime \prime }+y = \delta \left (t -1\right ) \]

19066

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{5}+y = k \delta \left (t -1\right ) \]

19067

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{10}+y = k \delta \left (t -1\right ) \]

19068

\[ {} y^{\prime \prime }+w^{2} y = g \left (t \right ) \]

19069

\[ {} y^{\prime \prime }+6 y^{\prime }+25 y = \sin \left (\alpha t \right ) \]

19070

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+17 y = g \left (t \right ) \]

19071

\[ {} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 1-\operatorname {Heaviside}\left (t -\pi \right ) \]

19072

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = g \left (t \right ) \]

19073

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (\alpha t \right ) \]

19076

\[ {} \frac {7 y^{\prime \prime }}{5}+y = \operatorname {Heaviside}\left (t \right ) \]

19077

\[ {} \frac {8 y^{\prime \prime }}{5}+y = \operatorname {Heaviside}\left (t \right ) \]

19179

\[ {} y^{\prime \prime } = \sin \left (x \right ) \]

19257

\[ {} y^{\prime \prime } = \frac {1}{\sqrt {y}} \]

19260

\[ {} 2 \left (2 a -y\right ) y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

19262

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = \ln \left (y\right ) y^{2} \]

19263

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

19264

\[ {} x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

19265

\[ {} n \,x^{3} y^{\prime \prime } = \left (y-x y^{\prime }\right )^{2} \]

19266

\[ {} y^{2} \left (x^{2} y^{\prime \prime }-x y^{\prime }+y\right ) = x^{3} \]

19267

\[ {} x^{2} y^{2} y^{\prime \prime }-3 x y^{2} y^{\prime }+4 y^{3}+x^{6} = 0 \]

19268

\[ {} y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime }-x y^{2} = 0 \]

19269

\[ {} x \left (2 x y+x^{2} y^{\prime }\right ) y^{\prime \prime }+4 x {y^{\prime }}^{2}+8 y y^{\prime } x +4 y^{2}-1 = 0 \]

19270

\[ {} x \left (x y+1\right ) y^{\prime \prime }+x^{2} {y^{\prime }}^{2}+\left (4 x y+2\right ) y^{\prime }+y^{2}+1 = 0 \]

19271

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}-{y^{\prime }}^{4} = 0 \]

19272

\[ {} a^{2} y^{\prime \prime } = 2 x \sqrt {1+{y^{\prime }}^{2}} \]

19273

\[ {} x^{2} y y^{\prime \prime }+x^{2} {y^{\prime }}^{2}-5 y y^{\prime } x = 4 y^{2} \]

19274

\[ {} \left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2}+\left (1-\ln \left (y\right )\right ) y y^{\prime \prime } = 0 \]

19277

\[ {} {y^{\prime \prime }}^{2}+2 x y^{\prime \prime }-y^{\prime } = 0 \]

19278

\[ {} {y^{\prime \prime }}^{2}-2 x y^{\prime \prime }-y^{\prime } = 0 \]

19281

\[ {} n \left (n +1\right ) y-2 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

19282

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0 \]

19283

\[ {} \sin \left (x \right )^{2} y^{\prime \prime } = 2 y \]

19287

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 2 x^{3} \]

19288

\[ {} y^{\prime \prime }+\frac {x y^{\prime }}{1-x}-\frac {y}{1-x} = x -1 \]

19291

\[ {} y^{\prime \prime }+y = 0 \]

19292

\[ {} y^{\prime \prime }+\frac {y}{x^{2} \ln \left (x \right )} = {\mathrm e}^{x} \left (\frac {2}{x}+\ln \left (x \right )\right ) \]

19293

\[ {} y^{\prime \prime }+p_{1} y^{\prime }+p_{2} y = 0 \]

19294

\[ {} \left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y = 0 \]

19295

\[ {} \sin \left (x \right )^{2} y^{\prime \prime }+\sin \left (x \right ) \cos \left (x \right ) y^{\prime } = y \]

19300

\[ {} 2 y^{\prime \prime }+y^{\prime }-y = 0 \]

19302

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = x^{2} \]

19303

\[ {} y^{\prime \prime }-6 y^{\prime }+8 y = {\mathrm e}^{x}+{\mathrm e}^{2 x} \]

19306

\[ {} y^{\prime \prime }+4 y = \sin \left (2 x \right ) x \]

19307

\[ {} y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{-\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right ) \]

19308

\[ {} y^{\prime \prime }-y = \frac {{\mathrm e}^{x}-{\mathrm e}^{-x}}{{\mathrm e}^{x}+{\mathrm e}^{-x}} \]

19309

\[ {} y^{\prime \prime }-2 y = 4 x^{2} {\mathrm e}^{x^{2}} \]

19310

\[ {} y^{\prime \prime }+y = \sin \left (2 x \right ) \sin \left (x \right ) \]

19311

\[ {} y^{\prime \prime }+9 y = \ln \left (2 \sin \left (\frac {x}{2}\right )\right ) \]

19312

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {n \left (n +1\right ) y}{x^{2}} = 0 \]

19313

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x \]

19314

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+2 y = x \ln \left (x \right ) \]

19315

\[ {} x^{2} y^{\prime \prime }-2 y = x^{2}+\frac {1}{x} \]

19317

\[ {} \left (1+x \right )^{2} y^{\prime \prime }+y^{\prime } \left (1+x \right )+y = 4 \cos \left (\ln \left (1+x \right )\right ) \]

19318

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{x}+\left (1-\frac {m^{2}}{x^{2}}\right ) y = 0 \]

19319

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0 \]