4.7.7 Problems 601 to 700

Table 4.761: Solved using series method

#

ODE

Mathematica

Maple

Sympy

3362

\[ {} 9 x^{2} y^{\prime \prime }+9 \left (-x^{2}+x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

3363

\[ {} 4 \left (1-x \right ) x^{2} y^{\prime \prime }+3 x \left (2 x +1\right ) y^{\prime }-3 y = 0 \]

3364

\[ {} 2 x^{2} \left (1-3 x \right ) y^{\prime \prime }+5 x y^{\prime }-2 y = 0 \]

3365

\[ {} 4 x^{2} \left (1+x \right ) y^{\prime \prime }-5 x y^{\prime }+2 y = 0 \]

3366

\[ {} x^{2} \left (x +4\right ) y^{\prime \prime }+x \left (x -1\right ) y^{\prime }+y = 0 \]

3367

\[ {} \left (8-x \right ) x^{2} y^{\prime \prime }+6 x y^{\prime }-y = 0 \]

3368

\[ {} 2 x^{2} y^{\prime \prime }+x \left (x^{2}+1\right ) y^{\prime }-\left (1+x \right ) y = 0 \]

3369

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

3370

\[ {} 3 x^{2} y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

3371

\[ {} x^{3} \left (x^{2}+3\right ) y^{\prime \prime }+5 x y^{\prime }-\left (1+x \right ) y = 0 \]

3372

\[ {} 2 x y^{\prime \prime }-\left (x^{3}+1\right ) y^{\prime }+y = 0 \]

3373

\[ {} x y^{\prime \prime }+y^{\prime }+2 y = 0 \]

3374

\[ {} x y^{\prime \prime }+y^{\prime }+2 x y = 0 \]

3375

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 \left (1+x \right ) y = 0 \]

3376

\[ {} x^{2} y^{\prime \prime }-x \left (1+x \right ) y^{\prime }+y = 0 \]

3377

\[ {} x^{2} y^{\prime \prime }-x \left (2 x +3\right ) y^{\prime }+4 y = 0 \]

3378

\[ {} x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

3379

\[ {} x^{2} y^{\prime \prime }+x \left (x^{2}-1\right ) y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

3380

\[ {} x^{2} y^{\prime \prime }+x \left (2 x -1\right ) y^{\prime }+x \left (x -1\right ) y = 0 \]

3381

\[ {} x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

3382

\[ {} x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-\left (3 x^{2}+2\right ) y = 0 \]

3383

\[ {} \left (1-x \right ) x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }-9 y = 0 \]

3384

\[ {} \left (-x^{2}+x \right ) y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

3385

\[ {} x^{2} y^{\prime \prime }+x \left (x -7\right ) y^{\prime }+\left (x +12\right ) y = 0 \]

3386

\[ {} x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (x -4\right ) y^{\prime }+4 y = 0 \]

3387

\[ {} x^{2} y^{\prime \prime }+x \left (-x^{2}+3\right ) y^{\prime }-3 y = 0 \]

3388

\[ {} x y^{\prime \prime }+3 y^{\prime }-y = x \]

3389

\[ {} x y^{\prime \prime }+3 y^{\prime }-y = x \]

3390

\[ {} x y^{\prime \prime }+y^{\prime }-2 x y = x^{2} \]

3391

\[ {} x y^{\prime \prime }-x y^{\prime }+y = x^{3} \]

3392

\[ {} \left (1-2 x \right ) y^{\prime \prime }+4 x y^{\prime }-4 y = x^{2}-x \]

3393

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x +12\right ) y = x^{2}+x \]

3394

\[ {} x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (x^{2}+3\right ) y^{\prime }+y = -2 x^{2}+x \]

3395

\[ {} 3 x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (5-x \right ) y^{\prime }+\left (2 x^{2}-1\right ) y = -x^{3}+x \]

3396

\[ {} 9 x^{2} y^{\prime \prime }+\left (2+3 x \right ) y = x^{4}+x^{2} \]

3397

\[ {} 9 x^{2} y^{\prime \prime }+10 x y^{\prime }+y = x -1 \]

3398

\[ {} 2 x^{2} y^{\prime \prime }+\left (-x^{2}+x \right ) y^{\prime }-y = x^{3}+1 \]

3399

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 6 \left (-x^{2}+1\right )^{2} \]

3400

\[ {} \left (x^{2}+2 x \right ) y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+2 y = x^{2} \left (x +2\right )^{2} \]

3401

\[ {} 2 x^{2} y^{\prime \prime }+5 x y^{\prime }+\left (1+x \right ) y = x \left (x^{2}+x +1\right ) \]

3402

\[ {} \left (x^{3}+2 x^{2}\right ) y^{\prime \prime }-x y^{\prime }+\left (1-x \right ) y = x^{2} \left (1+x \right )^{2} \]

3501

\[ {} \left (-z^{2}+1\right ) y^{\prime \prime }-3 z y^{\prime }+\lambda y = 0 \]

3502

\[ {} 4 z y^{\prime \prime }+2 \left (1-z \right ) y^{\prime }-y = 0 \]

3503

\[ {} z y^{\prime \prime }-2 y^{\prime }+9 z^{5} y = 0 \]

3504

\[ {} f^{\prime \prime }+2 \left (z -1\right ) f^{\prime }+4 f = 0 \]

3505

\[ {} z^{2} y^{\prime \prime }-\frac {3 z y^{\prime }}{2}+\left (1+z \right ) y = 0 \]

3506

\[ {} z y^{\prime \prime }-2 y^{\prime }+y z = 0 \]

3507

\[ {} y^{\prime \prime }-2 z y^{\prime }-2 y = 0 \]

3508

\[ {} z \left (1-z \right ) y^{\prime \prime }+\left (1-z \right ) y^{\prime }+\lambda y = 0 \]

3509

\[ {} z y^{\prime \prime }+\left (2 z -3\right ) y^{\prime }+\frac {4 y}{z} = 0 \]

3510

\[ {} \left (z^{2}+5 z +6\right ) y^{\prime \prime }+2 y = 0 \]

3511

\[ {} \left (z^{2}+5 z +7\right ) y^{\prime \prime }+2 y = 0 \]

3512

\[ {} y^{\prime \prime }+\frac {y}{z^{3}} = 0 \]

3513

\[ {} z y^{\prime \prime }+\left (1-z \right ) y^{\prime }+\lambda y = 0 \]

3514

\[ {} \left (-z^{2}+1\right ) y^{\prime \prime }-z y^{\prime }+m^{2} y = 0 \]

3986

\[ {} -y+y^{\prime \prime } = 0 \]

3987

\[ {} y^{\prime \prime }+2 x y^{\prime }+4 y = 0 \]

3988

\[ {} y^{\prime \prime }-2 x y^{\prime }-2 y = 0 \]

3989

\[ {} y^{\prime \prime }-x^{2} y^{\prime }-2 x y = 0 \]

3990

\[ {} y^{\prime \prime }+x y = 0 \]

3991

\[ {} y^{\prime \prime }+x y^{\prime }+3 y = 0 \]

3992

\[ {} y^{\prime \prime }-x^{2} y^{\prime }-3 x y = 0 \]

3993

\[ {} y^{\prime \prime }+2 x^{2} y^{\prime }+2 x y = 0 \]

3994

\[ {} \left (x^{2}-3\right ) y^{\prime \prime }-3 x y^{\prime }-5 y = 0 \]

3995

\[ {} 2 y+4 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

3996

\[ {} \left (-4 x^{2}+1\right ) y^{\prime \prime }-20 x y^{\prime }-16 y = 0 \]

3997

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }-6 x y^{\prime }+12 y = 0 \]

3998

\[ {} y^{\prime \prime }+2 y^{\prime }+4 x y = 0 \]

3999

\[ {} y^{\prime \prime }+x y^{\prime }+\left (x +2\right ) y = 0 \]

4000

\[ {} y^{\prime \prime }-y \,{\mathrm e}^{x} = 0 \]

4001

\[ {} x y^{\prime \prime }-\left (x -1\right ) y^{\prime }-x y = 0 \]

4002

\[ {} \left (2 x^{2}+1\right ) y^{\prime \prime }+7 x y^{\prime }+2 y = 0 \]

4003

\[ {} 4 y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

4004

\[ {} y^{\prime \prime }+2 x^{2} y^{\prime }+x y = 2 \cos \left (x \right ) \]

4005

\[ {} y^{\prime \prime }+x y^{\prime }-4 y = 6 \,{\mathrm e}^{x} \]

4006

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{1-x}+x y = 0 \]

4007

\[ {} x^{2} y^{\prime \prime }+\frac {x y^{\prime }}{\left (-x^{2}+1\right )^{2}}+y = 0 \]

4008

\[ {} \left (x -2\right )^{2} y^{\prime \prime }+\left (x -2\right ) {\mathrm e}^{x} y^{\prime }+\frac {4 y}{x} = 0 \]

4009

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x \left (x -3\right )}-\frac {y}{x^{3} \left (x +3\right )} = 0 \]

4010

\[ {} x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-7 y = 0 \]

4011

\[ {} 4 x^{2} y^{\prime \prime }+x \,{\mathrm e}^{x} y^{\prime }-y = 0 \]

4012

\[ {} 4 x y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

4013

\[ {} x^{2} y^{\prime \prime }-x \cos \left (x \right ) y^{\prime }+5 y \,{\mathrm e}^{2 x} = 0 \]

4014

\[ {} 4 x^{2} y^{\prime \prime }+3 x y^{\prime }+x y = 0 \]

4015

\[ {} 6 x^{2} y^{\prime \prime }+x \left (1+18 x \right ) y^{\prime }+\left (1+12 x \right ) y = 0 \]

4016

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-\left (x +2\right ) y = 0 \]

4017

\[ {} 2 x y^{\prime \prime }+y^{\prime }-2 x y = 0 \]

4018

\[ {} 3 x^{2} y^{\prime \prime }-x \left (x +8\right ) y^{\prime }+6 y = 0 \]

4019

\[ {} 2 x^{2} y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+2 \left (4 x -1\right ) y = 0 \]

4020

\[ {} x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-\left (x +5\right ) y = 0 \]

4021

\[ {} 3 x^{2} y^{\prime \prime }+x \left (3 x +7\right ) y^{\prime }+\left (1+6 x \right ) y = 0 \]

4022

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (1-x \right ) y = 0 \]

4023

\[ {} 3 x^{2} y^{\prime \prime }+x \left (3 x^{2}+1\right ) y^{\prime }-2 x y = 0 \]

4024

\[ {} 4 x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (2 x +1\right ) y = 0 \]

4025

\[ {} x^{2} y^{\prime \prime }+x \left (3-2 x \right ) y^{\prime }+\left (1-2 x \right ) y = 0 \]

4026

\[ {} x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (4-x \right ) y = 0 \]

4027

\[ {} x^{2} y^{\prime \prime }+x \left (3-x \right ) y^{\prime }+y = 0 \]

4028

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-\left (x +4\right ) y = 0 \]

4029

\[ {} x^{2} y^{\prime \prime }-\left (-x^{2}+x \right ) y^{\prime }+\left (x^{3}+1\right ) y = 0 \]

4030

\[ {} x^{2} y^{\prime \prime }-\left (2 \sqrt {5}-1\right ) x y^{\prime }+\left (\frac {19}{4}-3 x^{2}\right ) y = 0 \]