| # | ODE | Mathematica | Maple | Sympy |
| \[
{} x y^{\prime }+y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x y^{\prime }+y = x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+y = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+y = \sin \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+y = 2 x^{4}+x^{3}+x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+y = \frac {1}{x^{3}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+2 x y = \sqrt {x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+\frac {y}{x} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \cos \left (x \right ) y^{\prime }+\frac {y}{x} = x
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \cos \left (x \right ) y^{\prime }+\frac {y}{x} = x +\sin \left (x \right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+y = \tan \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+y = \cos \left (x \right )+\sin \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-x \left (x +6\right ) y^{\prime }+10 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-5\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y+x y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+8 x y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}+1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-4\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x y^{\prime }+\left (2+3 x \right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-x y^{\prime }+\left (3 x -2\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -1\right ) y^{\prime \prime }-\left (3 x -2\right ) y^{\prime }+2 x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{3}-1\right ) y^{\prime \prime }+x^{2} y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +3\right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+2 x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 x^{2}-3\right ) y^{\prime \prime }-2 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+3 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} n \left (n +1\right ) y-2 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-3 x \right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{3}+x^{2}\right ) y^{\prime \prime }+\left (x^{2}-2 x \right ) y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{4}-2 x^{3}+x^{2}\right ) y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+x^{2} y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} \left (x^{5}+x^{4}-6 x^{3}\right ) y^{\prime \prime }+x^{2} y^{\prime }+\left (x -2\right ) y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} 2 x^{2} y^{\prime \prime }+x y^{\prime }+y \left (x^{2}-1\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{2} y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}-3\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+\frac {8}{9}\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x y^{\prime }+\left (2 x^{2}+\frac {5}{9}\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{9}\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y^{\prime \prime }+y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x y^{\prime \prime }-\left (x -2\right ) y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+2 y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+\left (x^{4}+x \right ) y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }-y^{\prime } \left (x^{2}+2\right )+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 x^{2}-x \right ) y^{\prime \prime }+\left (-2+2 x \right ) y^{\prime }+\left (-2 x^{2}+3 x -2\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x y^{\prime }+\frac {3 y}{4} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x -1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x y^{\prime }+8 y \left (x^{2}-1\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\frac {3 y}{4} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y^{\prime \prime }+6 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}-3\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} n \left (n +1\right ) y-2 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y^{\prime \prime }+y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 x y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y-3 x y^{\prime }+\left (1-x \right ) x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }-x^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+y \left (x^{2}-1\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-n^{2}+x^{2}\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+4 x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1-x \right ) x y^{\prime \prime }+\left (1-5 x \right ) y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-1\right )^{2} y^{\prime \prime }+y^{\prime } \left (1+x \right )-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+4 y^{\prime }-x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y^{\prime \prime }+y^{\prime } \left (1+x \right )-k y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+y^{\prime }-2 y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} 2 x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (x -1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-2 x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {2 y}{2 x -1} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -3\right ) y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime }-2 x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {y}{x -1} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {y}{x -1} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1-x \right ) y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{3}+2\right ) y^{\prime }-3 x^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{3}+2\right ) y^{\prime }+3 x^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \left (1+x \right )-x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \left (1+x \right )+\left (1-x \right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -2 y+\left (x^{2}+1\right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+x y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+4\right ) y^{\prime \prime }+2 x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-3 x^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{2}+4\right ) y^{\prime \prime }-5 x y^{\prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 6 y-2 x y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-6 x \right ) y^{\prime \prime }+4 \left (x -3\right ) y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\left (x +2\right ) y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-2 x +2\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-x y = 0
\]
|
✓ |
✓ |
✓ |
|