4.12.14 Problems 1301 to 1400

Table 4.1105: Third and higher order linear ODE

#

ODE

Mathematica

Maple

Sympy

18300

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = 1 \]

18301

\[ {} 5 y^{\prime \prime \prime }-7 y^{\prime \prime } = 3 \]

18302

\[ {} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime } = -6 \]

18303

\[ {} 3 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 2 \]

18304

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 1 \]

18327

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = x^{2}+x \]

18328

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \]

18330

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime } = x^{2}+x \]

18333

\[ {} y^{\prime \prime \prime }-y = \sin \left (x \right ) \]

18334

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = \cos \left (x \right ) \]

18335

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = \cos \left (2 x \right ) {\mathrm e}^{x} \]

18341

\[ {} y^{\prime \prime \prime }-y^{\prime \prime } = {\mathrm e}^{x}+1 \]

18342

\[ {} y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{2 x}+\sin \left (2 x \right ) \]

18352

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = x \,{\mathrm e}^{x}+\frac {\cos \left (x \right )}{2} \]

18354

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime } = {\mathrm e}^{x}+3 \sin \left (2 x \right )+1 \]

18370

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x}+2 x \]

18372

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = 4 x +3 \sin \left (x \right )+\cos \left (x \right ) \]

18373

\[ {} -4 y^{\prime }+y^{\prime \prime \prime } = x \,{\mathrm e}^{2 x}+\sin \left (x \right )+x^{2} \]

18374

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime \prime } = x \,{\mathrm e}^{x}-1 \]

18375

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime } = x +2 \,{\mathrm e}^{-x} \]

18390

\[ {} y^{\prime \prime \prime }-y^{\prime } = -2 x \]

18391

\[ {} y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x} \]

18392

\[ {} y^{\prime \prime \prime }-y = 2 x \]

18393

\[ {} y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x} \]

18410

\[ {} x^{2} y^{\prime \prime \prime }-3 x y^{\prime \prime }+3 y^{\prime } = 0 \]

18411

\[ {} x^{2} y^{\prime \prime \prime } = 2 y^{\prime } \]

18412

\[ {} \left (1+x \right )^{2} y^{\prime \prime \prime }-12 y^{\prime } = 0 \]

18413

\[ {} \left (2 x +1\right )^{2} y^{\prime \prime \prime }+2 \left (2 x +1\right ) y^{\prime \prime }+y^{\prime } = 0 \]

18443

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = \frac {x -1}{x^{3}} \]

18480

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

18481

\[ {} y^{\prime \prime \prime \prime }-\lambda ^{4} y = 0 \]

18483

\[ {} 2 y^{\prime \prime }+4 x y^{\prime \prime \prime }+x^{2} y^{\prime \prime \prime \prime } = 0 \]

18484

\[ {} 6 x y^{\prime \prime }+6 x^{2} y^{\prime \prime \prime }+x^{3} y^{\prime \prime \prime \prime } = 0 \]

19006

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = 0 \]

19007

\[ {} y^{\prime \prime \prime \prime }-6 y = t \,{\mathrm e}^{-t} \]

19021

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

19022

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

19023

\[ {} y^{\prime \prime \prime \prime }-9 y = 0 \]

19046

\[ {} y^{\prime \prime \prime \prime }-y = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]

19047

\[ {} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 1-\operatorname {Heaviside}\left (t -\pi \right ) \]

19062

\[ {} y^{\prime \prime \prime \prime }-y = \delta \left (t -1\right ) \]

19074

\[ {} y^{\prime \prime \prime \prime }-16 y = g \left (t \right ) \]

19075

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime }+16 y = g \left (t \right ) \]

19080

\[ {} y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+3 y = t \]

19081

\[ {} t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+8 y = \cos \left (t \right ) \]

19082

\[ {} t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y = 0 \]

19083

\[ {} y^{\prime \prime \prime }+t y^{\prime \prime }+t^{2} y^{\prime }+t^{2} y = \ln \left (t \right ) \]

19084

\[ {} \left (x -4\right ) y^{\prime \prime \prime \prime }+\left (1+x \right ) y^{\prime \prime }+y \tan \left (x \right ) = 0 \]

19085

\[ {} \left (x^{2}-2\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+3 y = 0 \]

19086

\[ {} y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }+4 y = 0 \]

19087

\[ {} t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+4 y = \cos \left (t \right ) \]

19088

\[ {} t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+7 t^{2} y = 0 \]

19089

\[ {} y^{\prime \prime \prime }+t y^{\prime \prime }+5 t^{2} y^{\prime }+2 t^{3} y = \ln \left (t \right ) \]

19090

\[ {} \left (x -1\right ) y^{\prime \prime \prime \prime }+\left (x +5\right ) y^{\prime \prime }+y \tan \left (x \right ) = 0 \]

19091

\[ {} \left (x^{2}-25\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+5 y = 0 \]

19094

\[ {} y^{\prime \prime \prime }+y^{\prime } = 0 \]

19095

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime } = 0 \]

19096

\[ {} y^{\prime \prime \prime }+4 y^{\prime \prime }-4 y^{\prime }-16 y = 0 \]

19097

\[ {} y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+9 y^{\prime \prime } = 0 \]

19098

\[ {} x y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

19099

\[ {} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

19256

\[ {} {y^{\prime \prime \prime }}^{2}+x^{2} = 1 \]

19279

\[ {} 2 x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+12 x y^{\prime }-12 y = 0 \]

19280

\[ {} y^{\prime \prime \prime }-\frac {3 y^{\prime \prime }}{x}+\frac {6 y^{\prime }}{x^{2}}-\frac {6 y}{x^{3}} = 0 \]

19284

\[ {} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

19285

\[ {} -y+x y^{\prime }-y^{\prime \prime }+x y^{\prime \prime \prime } = 0 \]

19286

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime \prime }-x y^{\prime \prime }+y^{\prime } = 0 \]

19289

\[ {} -2 x y+y^{\prime } \left (x^{2}+2\right )-2 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime \prime \prime } = x^{4}+12 \]

19290

\[ {} y^{\prime }+y^{\prime \prime \prime } = 0 \]

19296

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 0 \]

19297

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

19298

\[ {} y^{\prime \prime \prime \prime }+4 y = 0 \]

19299

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

19301

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

19304

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = x \,{\mathrm e}^{x} \]

19305

\[ {} y-4 y^{\prime }+6 y^{\prime \prime }-4 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } = {\mathrm e}^{x} \left (1+x \right ) \]

19316

\[ {} -2 y+2 x y^{\prime }-x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = x^{3}+3 x \]

19388

\[ {} 2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

19643

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

19644

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0 \]

19645

\[ {} y^{\prime \prime \prime }-y = 0 \]

19646

\[ {} y^{\prime \prime \prime }+y = 0 \]

19647

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

19648

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

19649

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

19650

\[ {} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

19651

\[ {} a^{4} y+2 a^{2} y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

19652

\[ {} a^{4} y+2 a^{2} y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

19653

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

19654

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

19655

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

19656

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0 \]

19657

\[ {} y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+48 y^{\prime \prime }+16 y^{\prime }-96 y = 0 \]

19658

\[ {} y^{\prime \prime \prime \prime } = 0 \]

19659

\[ {} y^{\prime \prime \prime \prime } = \sin \left (x \right )+24 \]

19660

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 10+42 \,{\mathrm e}^{3 x} \]

19661

\[ {} y^{\prime \prime \prime }-y^{\prime } = 1 \]

19662

\[ {} 3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 0 \]

19663

\[ {} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

19664

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]