| # | ODE | Mathematica | Maple | Sympy |
| \[
{} x^{3} y^{\prime \prime \prime \prime }+8 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }-8 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-2 y^{\prime }+y = 2 x^{3}-3 x^{2}+4 x +5
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}-y^{\prime \prime \prime } = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (6\right )}-y = x^{10}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime } = 12 x -2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime \prime } = 9 x^{2}-2 x +1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-8 y = 16 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = -x^{3}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-\frac {y^{\prime }}{4} = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime } = \frac {1}{x^{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-y^{\prime \prime }+y^{\prime \prime \prime } = 1+x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+2 y^{\prime \prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 12 \,{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-a^{4} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime \prime }-6 x^{\prime \prime \prime }+11 x^{\prime \prime }-6 x^{\prime } = {\mathrm e}^{-3 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{4} y^{\prime \prime \prime \prime }+x^{3} y^{\prime \prime \prime }-20 x^{2} y^{\prime \prime }+20 x y^{\prime } = 17 x^{6}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{4} x^{\prime \prime \prime \prime }-2 t^{3} x^{\prime \prime \prime }-20 t^{2} x^{\prime \prime }+12 t x^{\prime }+16 x = \cos \left (3 \ln \left (t \right )\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} v^{\prime \prime \prime }+2 x^{2} v^{\prime \prime }+v = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }-5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+4 y^{\prime \prime }+3 y^{\prime } = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-4 y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = x^{4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+8 x y^{\prime } = \ln \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{3}+x^{2}-3 x +1\right ) y^{\prime \prime \prime }+\left (9 x^{2}+6 x -9\right ) y^{\prime \prime }+\left (18 x +6\right ) y^{\prime }+6 y = x^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 y^{\prime }+5 x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = -\frac {1}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-9 y^{\prime \prime }-11 y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-m^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+8 y^{\prime \prime }-8 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }-8 y^{\prime }+12 y = X \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y = 3+{\mathrm e}^{-x}+5 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y = \left ({\mathrm e}^{x}+1\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+8 y = x^{4}+2 x +1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = \cos \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y = \sin \left (3 x \right )-\cos \left (\frac {x}{2}\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+y = x \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}-13 y^{\prime \prime \prime }+26 y^{\prime \prime }+82 y^{\prime }+104 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 y^{\prime \prime }+y^{\prime \prime \prime } = {\mathrm e}^{2 x}+x^{2}+x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }-6 y^{\prime }+8 y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+y^{\prime \prime } = x^{2} \left (b x +a \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-13 y^{\prime }+12 y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y = \cos \left (m x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = x^{2} \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-a^{4} y = x^{4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = {\mathrm e}^{x} \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-7 y^{\prime }-6 y = {\mathrm e}^{2 x} \left (1+x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }+4 y = x^{2} {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = x \,{\mathrm e}^{x}+{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = {\mathrm e}^{x}+\cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = {\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y = {\mathrm e}^{2 x} \sin \left (x \right )+{\mathrm e}^{\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+3 x y^{\prime }+9 x^{2} y^{\prime \prime }+6 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-\frac {4 y^{\prime \prime }}{x}+\frac {5 y^{\prime }}{x^{2}}-\frac {2 y}{x^{3}} = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -8 y+7 x y^{\prime }-3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y+2 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 10 c +\frac {10}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 16 \left (1+x \right )^{4} y^{\prime \prime \prime \prime }+96 \left (1+x \right )^{3} y^{\prime \prime \prime }+104 \left (1+x \right )^{2} y^{\prime \prime }+8 y^{\prime } \left (1+x \right )+y = x^{2}+4 x +3
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y+3 x y^{\prime }+9 x^{2} y^{\prime \prime }+6 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime } = \left (\ln \left (x \right )+1\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y-x^{2} y^{\prime }+2 x^{3} y^{\prime \prime }+x^{4} y^{\prime \prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime } = x \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime \prime \prime }+1 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime \prime }-4 x y^{\prime \prime }+6 y^{\prime } = 4
\]
|
✓ |
✓ |
✓ |
|
| \[
{} a^{2} y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}-m^{2} y^{\prime \prime \prime } = {\mathrm e}^{a x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{3}+x +1\right ) y^{\prime \prime \prime }+\left (6 x +3\right ) y^{\prime \prime }+6 y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x \left (x^{2}+2\right ) y^{\prime }+3 x^{2} y = 2 x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime \prime }-a^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 x y^{\prime }+4 y = \frac {2}{x^{3}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime \prime }-x y^{\prime \prime }-y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime } = \sin \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime \prime } \cos \left (x \right )-2 y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = \sin \left (2 x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime } = f \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y-y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|