| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Lienard] |
✓ |
✓ |
✓ |
✓ |
0.755 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}}&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✗ |
✗ |
✓ |
✗ |
0.202 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✗ |
✗ |
✓ |
✗ |
0.395 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +\left (4 x +4\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.867 |
|
| \begin{align*}
4 x^{2} y^{\prime \prime }-8 x^{2} y^{\prime }+\left (4 x^{2}+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.002 |
|
| \begin{align*}
y^{\prime \prime } x +2 y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Lienard] |
✓ |
✓ |
✓ |
✓ |
0.926 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x^{2}-2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.074 |
|
| \begin{align*}
y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.942 |
|
| \begin{align*}
\left (x -1\right )^{2} y^{\prime \prime }-3 \left (x -1\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=1\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.838 |
|
| \begin{align*}
3 \left (x +1\right )^{2} y^{\prime \prime }-\left (x +1\right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=-1\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.816 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Bessel] |
✓ |
✓ |
✓ |
✓ |
5.345 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.916 |
|
| \begin{align*}
\left (1-x \right ) x y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Jacobi] |
✓ |
✓ |
✓ |
✓ |
1.254 |
|
| \begin{align*}
\left (2 x^{2}+2 x \right ) y^{\prime \prime }+\left (5 x +1\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.991 |
|
| \begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+\left (5 x +4\right ) y^{\prime }+4 y&=0 \\
\end{align*} Series expansion around \(x=-1\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.420 |
|
| \begin{align*}
\left (x^{2}-x -6\right ) y^{\prime \prime }+\left (3 x +5\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=3\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.288 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +p^{2} y&=0 \\
\end{align*} Series expansion around \(x=1\). |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
1.786 |
|
| \begin{align*}
\left (1-{\mathrm e}^{x}\right ) y^{\prime \prime }+\frac {y^{\prime }}{2}+{\mathrm e}^{x} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.735 |
|
| \begin{align*}
y^{\prime \prime }+2 y x&=x^{2} \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.503 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime } x +y&=x \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.589 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=x^{3}-x \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.634 |
|
| \begin{align*}
2 y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.640 |
|
| \begin{align*}
\left (x^{2}+4\right ) y^{\prime \prime }-y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.855 |
|
| \begin{align*}
y-y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.584 |
|
| \begin{align*}
y^{\prime \prime }-\left (x +1\right ) y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.736 |
|
| \begin{align*}
\left (x -1\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.858 |
|
| \begin{align*}
x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\left (2+x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.014 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.906 |
|
| \begin{align*}
y^{\prime \prime } x -4 y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Lienard] |
✓ |
✓ |
✓ |
✓ |
1.006 |
|
| \begin{align*}
4 x^{2} y^{\prime \prime }+4 x^{2} y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.862 |
|
| \begin{align*}
2 y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.127 |
|
| \begin{align*}
y^{\prime \prime } x -\left (x -1\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Laguerre] |
✓ |
✓ |
✓ |
✓ |
0.987 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.819 |
|
| \begin{align*}
y^{\prime \prime } x +\left (x +1\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.896 |
|
| \begin{align*}
x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
0.032 |
|
| \begin{align*}
x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-3 y^{\prime } x +\left (x -1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
0.034 |
|
| \begin{align*}
x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+\left (x^{2}+2 x \right ) y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
0.033 |
|
| \begin{align*}
x^{3} y^{\prime \prime \prime }+\left (2 x^{3}-x^{2}\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
0.032 |
|
| \begin{align*}
x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=\infty \). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.972 |
|
| \begin{align*}
9 \left (x -2\right )^{2} \left (x -3\right ) y^{\prime \prime }+6 x \left (x -2\right ) y^{\prime }+16 y&=0 \\
\end{align*} Series expansion around \(x=\infty \). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.500 |
|
| \begin{align*}
p \left (1+p \right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=\infty \). |
[_Gegenbauer] |
✓ |
✓ |
✓ |
✓ |
1.766 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=5 \,{\mathrm e}^{3 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.592 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=t \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.395 |
|
| \begin{align*}
y^{\prime \prime }-y&=t^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.380 |
|
| \begin{align*}
L i^{\prime }+R i&=E_{0} \operatorname {Heaviside}\left (t \right ) \\
i \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
0.468 |
|
| \begin{align*}
L i^{\prime }+R i&=E_{0} \delta \left (t \right ) \\
i \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.248 |
|
| \begin{align*}
L i^{\prime }+R i&=E_{0} \sin \left (\omega t \right ) \\
i \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.503 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-5 y&=1 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-2 y&=-6 \,{\mathrm e}^{\pi -t} \\
y \left (\pi \right ) &= 1 \\
y^{\prime }\left (\pi \right ) &= 4 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.718 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-y&=t \,{\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.400 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }+y&=3 \,{\mathrm e}^{-t} \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.424 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+4 y&=0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.276 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+3 y&=2 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.406 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+2 y&=t \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.482 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }+12 y&={\mathrm e}^{2 t} t \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.402 |
|
| \begin{align*}
i^{\prime \prime }+2 i^{\prime }+3 i&=\left \{\begin {array}{cc} 30 & 0<t <2 \pi \\ 0 & 2 \pi \le t \le 5 \pi \\ 10 & 5 \pi <t <\infty \end {array}\right . \\
i \left (0\right ) &= 8 \\
i^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✗ |
✓ |
✗ |
22.660 |
|
| \begin{align*}
x^{\prime }&=x+3 y \\
y^{\prime }&=3 x+y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.408 |
|
| \begin{align*}
x^{\prime }&=x+3 y \\
y^{\prime }&=3 x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 5 \\
y \left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.422 |
|
| \begin{align*}
x^{\prime }&=x+2 y \\
y^{\prime }&=3 x+2 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.481 |
|
| \begin{align*}
x^{\prime }&=x+2 y+t -1 \\
y^{\prime }&=3 x+2 y-5 t -2 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.716 |
|
| \begin{align*}
x^{\prime }&=x+y \\
y^{\prime }&=y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.302 |
|
| \begin{align*}
x^{\prime }&=x \\
y^{\prime }&=y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.253 |
|
| \begin{align*}
x^{\prime }&=-3 x+4 y \\
y^{\prime }&=-2 x+3 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.429 |
|
| \begin{align*}
x^{\prime }&=4 x-2 y \\
y^{\prime }&=5 x+2 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.641 |
|
| \begin{align*}
x^{\prime }&=5 x+4 y \\
y^{\prime }&=-x+y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.394 |
|
| \begin{align*}
x^{\prime }&=4 x-3 y \\
y^{\prime }&=8 x-6 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.466 |
|
| \begin{align*}
x^{\prime }&=2 x \\
y^{\prime }&=3 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.305 |
|
| \begin{align*}
x^{\prime }&=-4 x-y \\
y^{\prime }&=x-2 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.349 |
|
| \begin{align*}
x^{\prime }&=7 x+6 y \\
y^{\prime }&=2 x+6 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.498 |
|
| \begin{align*}
x^{\prime }&=x-2 y \\
y^{\prime }&=4 x+5 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.623 |
|
| \begin{align*}
x^{\prime }&=x+y-5 t +2 \\
y^{\prime }&=4 x-2 y-8 t -8 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.711 |
|
| \begin{align*}
x^{\prime }&=3 x-4 y \\
y^{\prime }&=4 x-7 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.483 |
|
| \begin{align*}
x^{\prime }&=x+y \\
y^{\prime }&=4 x+y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| \begin{align*}
x^{\prime }&=-3 x+\sqrt {2}\, y \\
y^{\prime }&=\sqrt {2}\, x-2 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.528 |
|
| \begin{align*}
x^{\prime }&=5 x+3 y \\
y^{\prime }&=-6 x-4 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| \begin{align*}
x^{\prime }&=3 x+2 y \\
y^{\prime }&=-2 x-y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.359 |
|
| \begin{align*}
x^{\prime }&=x+y \\
y^{\prime }&=-x+y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.483 |
|
| \begin{align*}
x^{\prime }&=3 x-5 y \\
y^{\prime }&=-x+2 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.664 |
|
| \begin{align*}
x^{\prime }&=x+2 y \\
y^{\prime }&=-4 x+y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.584 |
|
| \begin{align*}
x^{\prime }&=3 x+2 y+z \\
y^{\prime }&=-2 x-y+3 z \\
z^{\prime }&=x+y+z \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.829 |
|
| \begin{align*}
x^{\prime }&=-x+y-z \\
y^{\prime }&=2 x-y-4 z \\
z^{\prime }&=3 x-y+z \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✗ |
20.252 |
|
| \begin{align*}
x^{\prime }&=x+2 y-4 t +1 \\
y^{\prime }&=-x+2 y+3 t +4 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
2.123 |
|
| \begin{align*}
x^{\prime }&=-2 x+y-t +3 \\
y^{\prime }&=x+4 y+t -2 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
2.039 |
|
| \begin{align*}
x^{\prime }&=-4 x+y-t +3 \\
y^{\prime }&=-x-5 y+t +1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
2.167 |
|
| \begin{align*}
x^{\prime }&=x y+1 \\
y^{\prime }&=-x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 2 \\
y \left (0\right ) &= -1 \\
\end{align*} |
system_of_ODEs |
✗ |
✗ |
✗ |
✗ |
0.039 |
|
| \begin{align*}
x^{\prime }&=t y+1 \\
y^{\prime }&=-t x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= -1 \\
\end{align*} |
system_of_ODEs |
✗ |
✗ |
✗ |
✗ |
0.039 |
|
| \begin{align*}
y^{\prime }&=y^{2}-x \\
y \left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
[[_Riccati, _special]] |
✓ |
✓ |
✓ |
✓ |
0.239 |
|
| \begin{align*}
y^{\prime }&=y^{2}-x \\
y \left (0\right ) &= 1 \\
\end{align*} |
[[_Riccati, _special]] |
✓ |
✓ |
✓ |
✗ |
13.072 |
|
| \begin{align*}
y^{\prime }-2 y&=x^{2} \\
y \left (1\right ) &= 1 \\
\end{align*} Series expansion around \(x=1\). |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.483 |
|
| \begin{align*}
y^{\prime }-2 y&=x^{2} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.068 |
|
| \begin{align*}
y^{\prime }&=y+x \,{\mathrm e}^{y} \\
y \left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
[‘y=_G(x,y’)‘] |
✓ |
✓ |
✗ |
✓ |
0.755 |
|
| \begin{align*}
y^{\prime }&=y+x \,{\mathrm e}^{y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✗ |
✗ |
✗ |
✗ |
8.418 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.404 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.503 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.424 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.700 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.403 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.450 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.782 |
|