2.2.103 Problems 10201 to 10300

Table 2.207: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

10201

\[ {}y^{\prime } = \frac {y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right ) x +y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x +y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )-\sin \left (\frac {y}{x}\right ) y x -y \sin \left (\frac {y}{x}\right )+2 \sin \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x}{2 \cos \left (\frac {y}{x}\right ) \sin \left (\frac {y}{2 x}\right ) x \cos \left (\frac {y}{2 x}\right ) \left (x +1\right )} \]

[[_homogeneous, ‘class D‘]]

40.791

10202

\[ {}y^{\prime } = -\frac {216 y \left (-2 y^{4}-3 y^{3}-6 y^{2}-6 y+6 x +6\right )}{216 x^{3}+2808 y^{4}-1296 y^{2}+1728 y^{3}-1296 y-1296 y x -648 x y^{3}-1944 x y^{2}-648 x^{2} y+2484 y^{6}-18 y^{8}+4428 y^{5}-648 x^{2} y^{2}-432 x y^{4}+72 y^{8} x +216 y^{7} x +594 x y^{6}-216 x^{2} y^{4}+594 y^{7}-324 x^{2} y^{3}+1080 y^{5} x -126 y^{10}-315 y^{9}-8 y^{12}-36 y^{11}} \]

[_rational]

2.553

10203

\[ {}y^{\prime } = \frac {\left (y x +1\right )^{3}}{x^{5}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

1.953

10204

\[ {}y^{\prime } = \frac {x \left (-x^{2}+2 x^{2} y-2 x^{4}+1\right )}{y-x^{2}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.090

10205

\[ {}y^{\prime } = y \left (y^{2}+y \,{\mathrm e}^{b x}+{\mathrm e}^{2 b x}\right ) {\mathrm e}^{-2 b x} \]

[[_1st_order, _with_linear_symmetries], _Abel]

1.798

10206

\[ {}y^{\prime } = y^{3}-3 x^{2} y^{2}+3 y x^{4}-x^{6}+2 x \]

[[_1st_order, _with_linear_symmetries], _Abel]

1.350

10207

\[ {}y^{\prime } = y^{3}+x^{2} y^{2}+\frac {y x^{4}}{3}+\frac {x^{6}}{27}-\frac {2 x}{3} \]

[[_1st_order, _with_linear_symmetries], _Abel]

1.393

10208

\[ {}y^{\prime } = \frac {y \left (y^{2} x^{7}+y x^{4}+x -3\right )}{x} \]

[_rational, _Abel]

1.296

10209

\[ {}y^{\prime } = y \left (y^{2}+{\mathrm e}^{-x^{2}} y+{\mathrm e}^{-2 x^{2}}\right ) {\mathrm e}^{2 x^{2}} x \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Abel]

9.489

10210

\[ {}y^{\prime } = \frac {y \left (y^{2}+y x +x^{2}+x \right )}{x^{2}} \]

[[_homogeneous, ‘class D‘], _rational, _Abel]

1.836

10211

\[ {}y^{\prime } = \frac {y^{3}-3 x y^{2}+3 x^{2} y-x^{3}+x}{x} \]

[[_1st_order, _with_linear_symmetries], _rational, _Abel]

1.399

10212

\[ {}y^{\prime } = \frac {x^{3} y^{3}+6 x^{2} y^{2}+12 y x +8+2 x}{x^{3}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

1.917

10213

\[ {}y^{\prime } = \frac {y^{3} a^{3} x^{3}+3 y^{2} a^{2} x^{2}+3 a x y+1+a^{2} x}{x^{3} a^{3}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

2.003

10214

\[ {}y^{\prime } = \frac {y \,{\mathrm e}^{-\frac {x^{2}}{2}} \left (2 y^{2}+2 y \,{\mathrm e}^{\frac {x^{2}}{4}}+2 \,{\mathrm e}^{\frac {x^{2}}{2}}+x \,{\mathrm e}^{\frac {x^{2}}{2}}\right )}{2} \]

[_Abel]

68.720

10215

\[ {}y^{\prime } = \frac {y^{3}-3 x y^{2}+3 x^{2} y-x^{3}+x^{2}}{\left (x -1\right ) \left (x +1\right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

2.457

10216

\[ {}y^{\prime } = \frac {y \left (x^{2} y^{2}+y x \,{\mathrm e}^{x}+{\mathrm e}^{2 x}\right ) {\mathrm e}^{-2 x} \left (x -1\right )}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Abel]

2.063

10217

\[ {}y^{\prime } = \frac {\left (y x +1\right ) \left (x^{2} y^{2}+x^{2} y+2 y x +1+x +x^{2}\right )}{x^{5}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

2.008

10218

\[ {}y^{\prime } = \frac {y^{3}-3 x y^{2} \ln \left (x \right )+3 x^{2} \ln \left (x \right )^{2} y-x^{3} \ln \left (x \right )^{3}+x^{2}+y x}{x^{2}} \]

[_Abel]

2.178

10219

\[ {}y^{\prime } = -F \left (x \right ) \left (-a \,x^{2}+y^{2}\right )+\frac {y}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

2.053

10220

\[ {}y^{\prime } = -F \left (x \right ) \left (-x^{2}-2 y x +y^{2}\right )+\frac {y}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

2.229

10221

\[ {}y^{\prime } = -F \left (x \right ) \left (-a y^{2}-b \,x^{2}\right )+\frac {y}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

2.278

10222

\[ {}y^{\prime } = -F \left (x \right ) \left (-y^{2}+2 x^{2} y+1-x^{4}\right )+2 x \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.275

10223

\[ {}y^{\prime } = -F \left (x \right ) \left (x^{2}+2 y x -y^{2}\right )+\frac {y}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

2.307

10224

\[ {}y^{\prime } = -F \left (x \right ) \left (-7 x y^{2}-x^{3}\right )+\frac {y}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

2.155

10225

\[ {}y^{\prime } = -F \left (x \right ) \left (-y^{2}-2 y \ln \left (x \right )-\ln \left (x \right )^{2}\right )+\frac {y}{\ln \left (x \right ) x} \]

[_Riccati]

2.558

10226

\[ {}y^{\prime } = -x^{3} \left (-y^{2}-2 y \ln \left (x \right )-\ln \left (x \right )^{2}\right )+\frac {y}{\ln \left (x \right ) x} \]

[_Riccati]

3.684

10227

\[ {}y^{\prime } = \left (y-{\mathrm e}^{x}\right )^{2}+{\mathrm e}^{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

1.500

10228

\[ {}y^{\prime } = \frac {\left (y-\operatorname {Si}\left (x \right )\right )^{2}+\sin \left (x \right )}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

5.645

10229

\[ {}y^{\prime } = \left (y+\cos \left (x \right )\right )^{2}+\sin \left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.098

10230

\[ {}y^{\prime } = \frac {\left (y-\ln \left (x \right )-\operatorname {Ci}\left (x \right )\right )^{2}+\cos \left (x \right )}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

47.898

10231

\[ {}y^{\prime } = \frac {\left (y-x +\ln \left (x +1\right )\right )^{2}+x}{x +1} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

2.156

10232

\[ {}y^{\prime } = \frac {2 x^{2} y+x^{3}+y \ln \left (x \right ) x -y^{2}-y x}{x^{2} \left (x +\ln \left (x \right )\right )} \]

[_Riccati]

2.783

10233

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

1.095

10234

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.650

10235

\[ {}y^{\prime \prime }+y-\sin \left (n x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.002

10236

\[ {}y^{\prime \prime }+y-a \cos \left (b x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.023

10237

\[ {}y^{\prime \prime }+y-\sin \left (a x \right ) \sin \left (b x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

14.932

10238

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

1.750

10239

\[ {}y^{\prime \prime }-2 y-4 x^{2} {\mathrm e}^{x^{2}} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.226

10240

\[ {}y^{\prime \prime }+a^{2} y-\cot \left (a x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.466

10241

\[ {}y^{\prime \prime }+l y = 0 \]

[[_2nd_order, _missing_x]]

1.491

10242

\[ {}y^{\prime \prime }+\left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.611

10243

\[ {}y^{\prime \prime }-\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.791

10244

\[ {}y^{\prime \prime }-\left (x^{2}+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.278

10245

\[ {}y^{\prime \prime }-\left (a^{2} x^{2}+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.854

10246

\[ {}y^{\prime \prime }-c \,x^{a} y = 0 \]

[[_Emden, _Fowler]]

0.779

10247

\[ {}y^{\prime \prime }-\left (a^{2} x^{2 n}-1\right ) y = 0 \]

[_Titchmarsh]

0.159

10248

\[ {}y^{\prime \prime }+\left (a \,x^{2 c}+b \,x^{c -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.174

10249

\[ {}y^{\prime \prime }+\left ({\mathrm e}^{2 x}-v^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.657

10250

\[ {}y^{\prime \prime }+a \,{\mathrm e}^{b x} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.659

10251

\[ {}y^{\prime \prime }-\left (4 a^{2} b^{2} x^{2} {\mathrm e}^{2 b \,x^{2}}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.177

10252

\[ {}y^{\prime \prime }+\left (a \,{\mathrm e}^{2 x}+b \,{\mathrm e}^{x}+c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.183

10253

\[ {}y^{\prime \prime }+\left (a \cosh \left (x \right )^{2}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.361

10254

\[ {}y^{\prime \prime }+\left (a \cos \left (2 x \right )+b \right ) y = 0 \]

[_ellipsoidal]

0.289

10255

\[ {}y^{\prime \prime }+\left (a \cos \left (x \right )^{2}+b \right ) y = 0 \]

[_ellipsoidal]

0.461

10256

\[ {}y^{\prime \prime }-\left (1+2 \tan \left (x \right )^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.335

10257

\[ {}y^{\prime \prime }-\left (\frac {m \left (m -1\right )}{\cos \left (x \right )^{2}}+\frac {n \left (n -1\right )}{\sin \left (x \right )^{2}}+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.095

10258

\[ {}y^{\prime \prime }-\left (n \left (n +1\right ) \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right )+B \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.145

10259

\[ {}y^{\prime \prime }-\left (n \left (n +1\right ) k^{2} \operatorname {JacobiSN}\left (x , k\right )^{2}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.186

10260

\[ {}y^{\prime \prime }-\left (\frac {p^{\prime \prime \prime \prime }\left (x \right )}{30}+\frac {7 p^{\prime \prime }\left (x \right )}{3}+a p \left (x \right )+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.196

10261

\[ {}y^{\prime \prime }-\left (f \left (x \right )^{2}+f^{\prime }\left (x \right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.163

10262

\[ {}y^{\prime \prime }+\left (P \left (x \right )+l \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.126

10263

\[ {}y^{\prime \prime }-f \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.115

10264

\[ {}y^{\prime \prime }+y^{\prime }+a \,{\mathrm e}^{-2 x} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.039

10265

\[ {}y^{\prime \prime }-y^{\prime }+{\mathrm e}^{2 x} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.953

10266

\[ {}y^{\prime \prime }+a y^{\prime }+b y = 0 \]

[[_2nd_order, _missing_x]]

0.955

10267

\[ {}y^{\prime \prime }+a y^{\prime }+b y-f \left (x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.040

10268

\[ {}y^{\prime \prime }+a y^{\prime }-\left (b^{2} x^{2}+c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.481

10269

\[ {}y^{\prime \prime }+2 a y^{\prime }+f \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.186

10270

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.014

10271

\[ {}y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.267

10272

\[ {}y^{\prime \prime }+y^{\prime } x +\left (n +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.420

10273

\[ {}y^{\prime \prime }+y^{\prime } x -n y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.429

10274

\[ {}y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[_Hermite]

1.196

10275

\[ {}y^{\prime \prime }-y^{\prime } x -a y = 0 \]

[_Hermite]

0.439

10276

\[ {}y^{\prime \prime }-y^{\prime } x +\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.158

10277

\[ {}y^{\prime \prime }-2 y^{\prime } x +a y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.419

10278

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.633

10279

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (3 x^{2}+2 n -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.388

10280

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-1\right ) y-{\mathrm e}^{x} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.076

10281

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.751

10282

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-3\right ) y-{\mathrm e}^{x^{2}} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.100

10283

\[ {}y^{\prime \prime }+a x y^{\prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.500

10284

\[ {}y^{\prime \prime }+2 a x y^{\prime }+a^{2} x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.260

10285

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.591

10286

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (\operatorname {a1} \,x^{2}+\operatorname {b1} x +\operatorname {c1} \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.243

10287

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.673

10288

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-\left (x +1\right )^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.261

10289

\[ {}y^{\prime \prime }-x^{2} \left (x +1\right ) y^{\prime }+x \left (x^{4}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.156

10290

\[ {}y^{\prime \prime }+x^{4} y^{\prime }-x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.664

10291

\[ {}y^{\prime \prime }+a \,x^{q -1} y^{\prime }+b \,x^{q -2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.484

10292

\[ {}y^{\prime \prime }+y^{\prime } \sqrt {x}+\left (\frac {1}{4 \sqrt {x}}+\frac {x}{4}-9\right ) y-x \,{\mathrm e}^{-\frac {x^{{3}/{2}}}{3}} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.544

10293

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.208

10294

\[ {}y^{\prime \prime }-\left (2 \,{\mathrm e}^{x}+1\right ) y^{\prime }+{\mathrm e}^{2 x} y-{\mathrm e}^{3 x} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.513

10295

\[ {}y^{\prime \prime }+a y^{\prime }+\tan \left (x \right )+b y = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.736

10296

\[ {}y^{\prime \prime }+2 n y^{\prime } \cot \left (x \right )+\left (-a^{2}+n^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.211

10297

\[ {}y^{\prime \prime }+y^{\prime } \tan \left (x \right )+y \cos \left (x \right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.727

10298

\[ {}y^{\prime \prime }+y^{\prime } \tan \left (x \right )-y \cos \left (x \right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.727

10299

\[ {}y^{\prime \prime }+y^{\prime } \cot \left (x \right )+v \left (v +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.754

10300

\[ {}y^{\prime \prime }-y^{\prime } \cot \left (x \right )+y \sin \left (x \right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.551