# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}y^{\prime } = \frac {y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right ) x +y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x +y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )-\sin \left (\frac {y}{x}\right ) y x -y \sin \left (\frac {y}{x}\right )+2 \sin \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x}{2 \cos \left (\frac {y}{x}\right ) \sin \left (\frac {y}{2 x}\right ) x \cos \left (\frac {y}{2 x}\right ) \left (x +1\right )}
\] |
[[_homogeneous, ‘class D‘]] |
✓ |
40.791 |
|
\[
{}y^{\prime } = -\frac {216 y \left (-2 y^{4}-3 y^{3}-6 y^{2}-6 y+6 x +6\right )}{216 x^{3}+2808 y^{4}-1296 y^{2}+1728 y^{3}-1296 y-1296 y x -648 x y^{3}-1944 x y^{2}-648 x^{2} y+2484 y^{6}-18 y^{8}+4428 y^{5}-648 x^{2} y^{2}-432 x y^{4}+72 y^{8} x +216 y^{7} x +594 x y^{6}-216 x^{2} y^{4}+594 y^{7}-324 x^{2} y^{3}+1080 y^{5} x -126 y^{10}-315 y^{9}-8 y^{12}-36 y^{11}}
\] |
[_rational] |
✗ |
2.553 |
|
\[
{}y^{\prime } = \frac {\left (y x +1\right )^{3}}{x^{5}}
\] |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel] |
✓ |
1.953 |
|
\[
{}y^{\prime } = \frac {x \left (-x^{2}+2 x^{2} y-2 x^{4}+1\right )}{y-x^{2}}
\] |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
✗ |
1.090 |
|
\[
{}y^{\prime } = y \left (y^{2}+y \,{\mathrm e}^{b x}+{\mathrm e}^{2 b x}\right ) {\mathrm e}^{-2 b x}
\] |
[[_1st_order, _with_linear_symmetries], _Abel] |
✓ |
1.798 |
|
\[
{}y^{\prime } = y^{3}-3 x^{2} y^{2}+3 y x^{4}-x^{6}+2 x
\] |
[[_1st_order, _with_linear_symmetries], _Abel] |
✓ |
1.350 |
|
\[
{}y^{\prime } = y^{3}+x^{2} y^{2}+\frac {y x^{4}}{3}+\frac {x^{6}}{27}-\frac {2 x}{3}
\] |
[[_1st_order, _with_linear_symmetries], _Abel] |
✓ |
1.393 |
|
\[
{}y^{\prime } = \frac {y \left (y^{2} x^{7}+y x^{4}+x -3\right )}{x}
\] |
[_rational, _Abel] |
✗ |
1.296 |
|
\[
{}y^{\prime } = y \left (y^{2}+{\mathrm e}^{-x^{2}} y+{\mathrm e}^{-2 x^{2}}\right ) {\mathrm e}^{2 x^{2}} x
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Abel] |
✓ |
9.489 |
|
\[
{}y^{\prime } = \frac {y \left (y^{2}+y x +x^{2}+x \right )}{x^{2}}
\] |
[[_homogeneous, ‘class D‘], _rational, _Abel] |
✓ |
1.836 |
|
\[
{}y^{\prime } = \frac {y^{3}-3 x y^{2}+3 x^{2} y-x^{3}+x}{x}
\] |
[[_1st_order, _with_linear_symmetries], _rational, _Abel] |
✓ |
1.399 |
|
\[
{}y^{\prime } = \frac {x^{3} y^{3}+6 x^{2} y^{2}+12 y x +8+2 x}{x^{3}}
\] |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel] |
✓ |
1.917 |
|
\[
{}y^{\prime } = \frac {y^{3} a^{3} x^{3}+3 y^{2} a^{2} x^{2}+3 a x y+1+a^{2} x}{x^{3} a^{3}}
\] |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel] |
✓ |
2.003 |
|
\[
{}y^{\prime } = \frac {y \,{\mathrm e}^{-\frac {x^{2}}{2}} \left (2 y^{2}+2 y \,{\mathrm e}^{\frac {x^{2}}{4}}+2 \,{\mathrm e}^{\frac {x^{2}}{2}}+x \,{\mathrm e}^{\frac {x^{2}}{2}}\right )}{2}
\] |
[_Abel] |
✓ |
68.720 |
|
\[
{}y^{\prime } = \frac {y^{3}-3 x y^{2}+3 x^{2} y-x^{3}+x^{2}}{\left (x -1\right ) \left (x +1\right )}
\] |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel] |
✓ |
2.457 |
|
\[
{}y^{\prime } = \frac {y \left (x^{2} y^{2}+y x \,{\mathrm e}^{x}+{\mathrm e}^{2 x}\right ) {\mathrm e}^{-2 x} \left (x -1\right )}{x}
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Abel] |
✗ |
2.063 |
|
\[
{}y^{\prime } = \frac {\left (y x +1\right ) \left (x^{2} y^{2}+x^{2} y+2 y x +1+x +x^{2}\right )}{x^{5}}
\] |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel] |
✓ |
2.008 |
|
\[
{}y^{\prime } = \frac {y^{3}-3 x y^{2} \ln \left (x \right )+3 x^{2} \ln \left (x \right )^{2} y-x^{3} \ln \left (x \right )^{3}+x^{2}+y x}{x^{2}}
\] |
[_Abel] |
✓ |
2.178 |
|
\[
{}y^{\prime } = -F \left (x \right ) \left (-a \,x^{2}+y^{2}\right )+\frac {y}{x}
\] |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
2.053 |
|
\[
{}y^{\prime } = -F \left (x \right ) \left (-x^{2}-2 y x +y^{2}\right )+\frac {y}{x}
\] |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
2.229 |
|
\[
{}y^{\prime } = -F \left (x \right ) \left (-a y^{2}-b \,x^{2}\right )+\frac {y}{x}
\] |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
2.278 |
|
\[
{}y^{\prime } = -F \left (x \right ) \left (-y^{2}+2 x^{2} y+1-x^{4}\right )+2 x
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
✓ |
2.275 |
|
\[
{}y^{\prime } = -F \left (x \right ) \left (x^{2}+2 y x -y^{2}\right )+\frac {y}{x}
\] |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
2.307 |
|
\[
{}y^{\prime } = -F \left (x \right ) \left (-7 x y^{2}-x^{3}\right )+\frac {y}{x}
\] |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
2.155 |
|
\[
{}y^{\prime } = -F \left (x \right ) \left (-y^{2}-2 y \ln \left (x \right )-\ln \left (x \right )^{2}\right )+\frac {y}{\ln \left (x \right ) x}
\] |
[_Riccati] |
✓ |
2.558 |
|
\[
{}y^{\prime } = -x^{3} \left (-y^{2}-2 y \ln \left (x \right )-\ln \left (x \right )^{2}\right )+\frac {y}{\ln \left (x \right ) x}
\] |
[_Riccati] |
✓ |
3.684 |
|
\[
{}y^{\prime } = \left (y-{\mathrm e}^{x}\right )^{2}+{\mathrm e}^{x}
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
✓ |
1.500 |
|
\[
{}y^{\prime } = \frac {\left (y-\operatorname {Si}\left (x \right )\right )^{2}+\sin \left (x \right )}{x}
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
✓ |
5.645 |
|
\[
{}y^{\prime } = \left (y+\cos \left (x \right )\right )^{2}+\sin \left (x \right )
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
✓ |
2.098 |
|
\[
{}y^{\prime } = \frac {\left (y-\ln \left (x \right )-\operatorname {Ci}\left (x \right )\right )^{2}+\cos \left (x \right )}{x}
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
✓ |
47.898 |
|
\[
{}y^{\prime } = \frac {\left (y-x +\ln \left (x +1\right )\right )^{2}+x}{x +1}
\] |
[[_1st_order, _with_linear_symmetries], _Riccati] |
✓ |
2.156 |
|
\[
{}y^{\prime } = \frac {2 x^{2} y+x^{3}+y \ln \left (x \right ) x -y^{2}-y x}{x^{2} \left (x +\ln \left (x \right )\right )}
\] |
[_Riccati] |
✓ |
2.783 |
|
\[
{}y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
1.095 |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.650 |
|
\[
{}y^{\prime \prime }+y-\sin \left (n x \right ) = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.002 |
|
\[
{}y^{\prime \prime }+y-a \cos \left (b x \right ) = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.023 |
|
\[
{}y^{\prime \prime }+y-\sin \left (a x \right ) \sin \left (b x \right ) = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
14.932 |
|
\[
{}y^{\prime \prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.750 |
|
\[
{}y^{\prime \prime }-2 y-4 x^{2} {\mathrm e}^{x^{2}} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.226 |
|
\[
{}y^{\prime \prime }+a^{2} y-\cot \left (a x \right ) = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.466 |
|
\[
{}y^{\prime \prime }+l y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.491 |
|
\[
{}y^{\prime \prime }+\left (a x +b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.611 |
|
\[
{}y^{\prime \prime }-\left (x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.791 |
|
\[
{}y^{\prime \prime }-\left (x^{2}+a \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.278 |
|
\[
{}y^{\prime \prime }-\left (a^{2} x^{2}+a \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.854 |
|
\[
{}y^{\prime \prime }-c \,x^{a} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.779 |
|
\[
{}y^{\prime \prime }-\left (a^{2} x^{2 n}-1\right ) y = 0
\] |
[_Titchmarsh] |
✗ |
0.159 |
|
\[
{}y^{\prime \prime }+\left (a \,x^{2 c}+b \,x^{c -1}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.174 |
|
\[
{}y^{\prime \prime }+\left ({\mathrm e}^{2 x}-v^{2}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.657 |
|
\[
{}y^{\prime \prime }+a \,{\mathrm e}^{b x} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.659 |
|
\[
{}y^{\prime \prime }-\left (4 a^{2} b^{2} x^{2} {\mathrm e}^{2 b \,x^{2}}-1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.177 |
|
\[
{}y^{\prime \prime }+\left (a \,{\mathrm e}^{2 x}+b \,{\mathrm e}^{x}+c \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.183 |
|
\[
{}y^{\prime \prime }+\left (a \cosh \left (x \right )^{2}+b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.361 |
|
\[
{}y^{\prime \prime }+\left (a \cos \left (2 x \right )+b \right ) y = 0
\] |
[_ellipsoidal] |
✗ |
0.289 |
|
\[
{}y^{\prime \prime }+\left (a \cos \left (x \right )^{2}+b \right ) y = 0
\] |
[_ellipsoidal] |
✗ |
0.461 |
|
\[
{}y^{\prime \prime }-\left (1+2 \tan \left (x \right )^{2}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.335 |
|
\[
{}y^{\prime \prime }-\left (\frac {m \left (m -1\right )}{\cos \left (x \right )^{2}}+\frac {n \left (n -1\right )}{\sin \left (x \right )^{2}}+a \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
2.095 |
|
\[
{}y^{\prime \prime }-\left (n \left (n +1\right ) \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right )+B \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.145 |
|
\[
{}y^{\prime \prime }-\left (n \left (n +1\right ) k^{2} \operatorname {JacobiSN}\left (x , k\right )^{2}+b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.186 |
|
\[
{}y^{\prime \prime }-\left (\frac {p^{\prime \prime \prime \prime }\left (x \right )}{30}+\frac {7 p^{\prime \prime }\left (x \right )}{3}+a p \left (x \right )+b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.196 |
|
\[
{}y^{\prime \prime }-\left (f \left (x \right )^{2}+f^{\prime }\left (x \right )\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.163 |
|
\[
{}y^{\prime \prime }+\left (P \left (x \right )+l \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.126 |
|
\[
{}y^{\prime \prime }-f \left (x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.115 |
|
\[
{}y^{\prime \prime }+y^{\prime }+a \,{\mathrm e}^{-2 x} y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.039 |
|
\[
{}y^{\prime \prime }-y^{\prime }+{\mathrm e}^{2 x} y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.953 |
|
\[
{}y^{\prime \prime }+a y^{\prime }+b y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.955 |
|
\[
{}y^{\prime \prime }+a y^{\prime }+b y-f \left (x \right ) = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.040 |
|
\[
{}y^{\prime \prime }+a y^{\prime }-\left (b^{2} x^{2}+c \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.481 |
|
\[
{}y^{\prime \prime }+2 a y^{\prime }+f \left (x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.186 |
|
\[
{}y^{\prime \prime }+y^{\prime } x +y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.014 |
|
\[
{}y^{\prime \prime }+y^{\prime } x -y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.267 |
|
\[
{}y^{\prime \prime }+y^{\prime } x +\left (n +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.420 |
|
\[
{}y^{\prime \prime }+y^{\prime } x -n y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.429 |
|
\[
{}y^{\prime \prime }-y^{\prime } x +2 y = 0
\] |
[_Hermite] |
✓ |
1.196 |
|
\[
{}y^{\prime \prime }-y^{\prime } x -a y = 0
\] |
[_Hermite] |
✗ |
0.439 |
|
\[
{}y^{\prime \prime }-y^{\prime } x +\left (x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.158 |
|
\[
{}y^{\prime \prime }-2 y^{\prime } x +a y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.419 |
|
\[
{}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.633 |
|
\[
{}y^{\prime \prime }-4 y^{\prime } x +\left (3 x^{2}+2 n -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.388 |
|
\[
{}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-1\right ) y-{\mathrm e}^{x} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.076 |
|
\[
{}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.751 |
|
\[
{}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-3\right ) y-{\mathrm e}^{x^{2}} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.100 |
|
\[
{}y^{\prime \prime }+a x y^{\prime }+b y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.500 |
|
\[
{}y^{\prime \prime }+2 a x y^{\prime }+a^{2} x^{2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.260 |
|
\[
{}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.591 |
|
\[
{}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (\operatorname {a1} \,x^{2}+\operatorname {b1} x +\operatorname {c1} \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
2.243 |
|
\[
{}y^{\prime \prime }-x^{2} y^{\prime }+y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.673 |
|
\[
{}y^{\prime \prime }-x^{2} y^{\prime }-\left (x +1\right )^{2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.261 |
|
\[
{}y^{\prime \prime }-x^{2} \left (x +1\right ) y^{\prime }+x \left (x^{4}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.156 |
|
\[
{}y^{\prime \prime }+x^{4} y^{\prime }-x^{3} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.664 |
|
\[
{}y^{\prime \prime }+a \,x^{q -1} y^{\prime }+b \,x^{q -2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.484 |
|
\[
{}y^{\prime \prime }+y^{\prime } \sqrt {x}+\left (\frac {1}{4 \sqrt {x}}+\frac {x}{4}-9\right ) y-x \,{\mathrm e}^{-\frac {x^{{3}/{2}}}{3}} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.544 |
|
\[
{}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.208 |
|
\[
{}y^{\prime \prime }-\left (2 \,{\mathrm e}^{x}+1\right ) y^{\prime }+{\mathrm e}^{2 x} y-{\mathrm e}^{3 x} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.513 |
|
\[
{}y^{\prime \prime }+a y^{\prime }+\tan \left (x \right )+b y = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.736 |
|
\[
{}y^{\prime \prime }+2 n y^{\prime } \cot \left (x \right )+\left (-a^{2}+n^{2}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
1.211 |
|
\[
{}y^{\prime \prime }+y^{\prime } \tan \left (x \right )+y \cos \left (x \right )^{2} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.727 |
|
\[
{}y^{\prime \prime }+y^{\prime } \tan \left (x \right )-y \cos \left (x \right )^{2} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.727 |
|
\[
{}y^{\prime \prime }+y^{\prime } \cot \left (x \right )+v \left (v +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.754 |
|
\[
{}y^{\prime \prime }-y^{\prime } \cot \left (x \right )+y \sin \left (x \right )^{2} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.551 |
|