2.2.104 Problems 10301 to 10400

Table 2.209: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

10301

\[ {}\left (6 y^{2}-3 x^{2} y+1\right ) y^{\prime }-3 x y^{2}+x = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.627

10302

\[ {}\left (6 y-x \right )^{2} y^{\prime }-6 y^{2}+2 x y+a = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

1.509

10303

\[ {}\left (a y^{2}+2 b x y+c \,x^{2}\right ) y^{\prime }+b y^{2}+2 c x y+d \,x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

824.837

10304

\[ {}\left (b \left (\beta y+\alpha x \right )^{2}-\beta \left (a x +b y\right )\right ) y^{\prime }+a \left (\beta y+\alpha x \right )^{2}-\alpha \left (a x +b y\right ) = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

1.813

10305

\[ {}\left (a y+b x +c \right )^{2} y^{\prime }+\left (\alpha y+\beta x +\gamma \right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _rational]

3.523

10306

\[ {}x \left (y^{2}-3 x \right ) y^{\prime }+2 y^{3}-5 x y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5.211

10307

\[ {}x \left (y^{2}+x^{2}-a \right ) y^{\prime }-y \left (y^{2}+x^{2}+a \right ) = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4.456

10308

\[ {}x \left (y^{2}+x y-x^{2}\right ) y^{\prime }-y^{3}+x y^{2}+x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

87.746

10309

\[ {}x \left (y^{2}+x^{2} y+x^{2}\right ) y^{\prime }-2 y^{3}-2 x^{2} y^{2}+x^{4} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3.293

10310

\[ {}2 x \left (y^{2}+5 x^{2}\right ) y^{\prime }+y^{3}-x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

19.870

10311

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

2.727

10312

\[ {}\left (3 x y^{2}-x^{2}\right ) y^{\prime }+y^{3}-2 x y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

2.329

10313

\[ {}6 x y^{2} y^{\prime }+2 y^{3}+x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

2.791

10314

\[ {}\left (6 x y^{2}+x^{2}\right ) y^{\prime }-y \left (3 y^{2}-x \right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.270

10315

\[ {}\left (x^{2} y^{2}+x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4.011

10316

\[ {}\left (x y-1\right )^{2} x y^{\prime }+\left (x^{2} y^{2}+1\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.136

10317

\[ {}\left (10 x^{3} y^{2}+x^{2} y+2 x \right ) y^{\prime }+5 x^{2} y^{3}+x y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

3.234

10318

\[ {}\left (y^{3}-3 x \right ) y^{\prime }-3 y+x^{2} = 0 \]

[_exact, _rational]

1.379

10319

\[ {}\left (y^{3}-x^{3}\right ) y^{\prime }-x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

11.832

10320

\[ {}\left (y^{2}+x^{2}+a \right ) y y^{\prime }+\left (y^{2}+x^{2}-a \right ) x = 0 \]

[_exact, _rational]

1.756

10321

\[ {}2 y^{3} y^{\prime }+x y^{2} = 0 \]

[_separable]

3.471

10322

\[ {}\left (2 y^{3}+y\right ) y^{\prime }-2 x^{3}-x = 0 \]

[_separable]

2.371

10323

\[ {}\left (2 y^{3}+5 x^{2} y\right ) y^{\prime }+5 x y^{2}+x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

98.271

10324

\[ {}\left (20 y^{3}-3 x y^{2}+6 x^{2} y+3 x^{3}\right ) y^{\prime }-y^{3}+6 x y^{2}+9 x^{2} y+4 x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

117.218

10325

\[ {}\left (\frac {y^{2}}{b}+\frac {x^{2}}{a}\right ) \left (y y^{\prime }+x \right )+\frac {\left (a -b \right ) \left (y y^{\prime }-x \right )}{a +b} = 0 \]

[_rational]

4.029

10326

\[ {}\left (2 a y^{3}+3 a x y^{2}-b \,x^{3}+c \,x^{2}\right ) y^{\prime }-a y^{3}+c y^{2}+3 b \,x^{2} y+2 b \,x^{3} = 0 \]

[_rational]

3.423

10327

\[ {}x y^{3} y^{\prime }+y^{4}-x \sin \left (x \right ) = 0 \]

[_Bernoulli]

34.710

10328

\[ {}\left (2 x y^{3}-x^{4}\right ) y^{\prime }-y^{4}+2 x^{3} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.966

10329

\[ {}\left (2 x y^{3}+y\right ) y^{\prime }+2 y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.149

10330

\[ {}\left (2 x y^{3}+x y+x^{2}\right ) y^{\prime }+y^{2}-x y = 0 \]

[_rational]

1.655

10331

\[ {}\left (3 x y^{3}-4 x y+y\right ) y^{\prime }+y^{2} \left (y^{2}-2\right ) = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.719

10332

\[ {}\left (7 x y^{3}+y-5 x \right ) y^{\prime }+y^{4}-5 y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.182

10333

\[ {}\left (x^{2} y^{3}+x y\right ) y^{\prime }-1 = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.534

10334

\[ {}\left (2 x^{2} y^{3}+x^{2} y^{2}-2 x \right ) y^{\prime }-2 y-1 = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.693

10335

\[ {}\left (10 x^{2} y^{3}-3 y^{2}-2\right ) y^{\prime }+5 x y^{4}+x = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.615

10336

\[ {}\left (a x y^{3}+c \right ) x y^{\prime }+\left (b \,x^{3} y+c \right ) y = 0 \]

[_rational]

1.694

10337

\[ {}\left (2 x^{3} y^{3}-x \right ) y^{\prime }+2 x^{3} y^{3}-y = 0 \]

[_rational]

1.495

10338

\[ {}y \left (y^{3}-2 x^{3}\right ) y^{\prime }+\left (2 y^{3}-x^{3}\right ) x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

84.412

10339

\[ {}y \left (\left (b x +a y\right )^{3}+b \,x^{3}\right ) y^{\prime }+x \left (\left (b x +a y\right )^{3}+a y^{3}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

51.580

10340

\[ {}\left (x y^{4}+2 x^{2} y^{3}+2 y+x \right ) y^{\prime }+y^{5}+y = 0 \]

[_rational]

99.188

10341

\[ {}a \,x^{2} y^{n} y^{\prime }-2 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1.395

10342

\[ {}y^{m} x^{n} \left (a x y^{\prime }+b y\right )+\alpha x y^{\prime }+\beta y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.274

10343

\[ {}\left (f \left (x +y\right )+1\right ) y^{\prime }+f \left (x +y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

1.871

10344

\[ {}\frac {y^{\prime } f_{\nu }\left (x \right ) \left (-y+y^{p +1}\right )}{-1+y}-\frac {g_{\nu }\left (x \right ) \left (-y+y^{q +1}\right )}{-1+y} = 0 \]

[_separable]

3.416

10345

\[ {}\left (\sqrt {x y}-1\right ) x y^{\prime }-\left (\sqrt {x y}+1\right ) y = 0 \]

[[_homogeneous, ‘class G‘]]

4.552

10346

\[ {}\left (2 x^{{5}/{2}} y^{{3}/{2}}+x^{2} y-x \right ) y^{\prime }-x^{{3}/{2}} y^{{5}/{2}}+x y^{2}-y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

48.888

10347

\[ {}\left (\sqrt {x +y}+1\right ) y^{\prime }+1 = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.497

10348

\[ {}\sqrt {y^{2}-1}\, y^{\prime }-\sqrt {x^{2}-1} = 0 \]

[_separable]

1.846

10349

\[ {}\left (\sqrt {1+y^{2}}+a x \right ) y^{\prime }+\sqrt {x^{2}+1}+a y = 0 \]

[_exact]

34.040

10350

\[ {}\left (\sqrt {x^{2}+y^{2}}+x \right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.637

10351

\[ {}\left (y \sqrt {x^{2}+y^{2}}+\left (y^{2}-x^{2}\right ) \sin \left (\alpha \right )-2 x y \cos \left (\alpha \right )\right ) y^{\prime }+x \sqrt {x^{2}+y^{2}}+2 x y \sin \left (\alpha \right )+\left (y^{2}-x^{2}\right ) \cos \left (\alpha \right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

165.826

10352

\[ {}\left (x \sqrt {1+x^{2}+y^{2}}-y \left (x^{2}+y^{2}\right )\right ) y^{\prime }-y \sqrt {1+x^{2}+y^{2}}-x \left (x^{2}+y^{2}\right ) = 0 \]

[[_1st_order, _with_linear_symmetries]]

2.686

10353

\[ {}\left (\frac {\operatorname {e1} \left (x +a \right )}{\left (\left (x +a \right )^{2}+y^{2}\right )^{{3}/{2}}}+\frac {\operatorname {e2} \left (x -a \right )}{\left (\left (x -a \right )^{2}+y^{2}\right )^{{3}/{2}}}\right ) y^{\prime }-y \left (\frac {\operatorname {e1}}{\left (\left (x +a \right )^{2}+y^{2}\right )^{{3}/{2}}}+\frac {\operatorname {e2}}{\left (\left (x -a \right )^{2}+y^{2}\right )^{{3}/{2}}}\right ) = 0 \]

unknown

218.575

10354

\[ {}\left (x \,{\mathrm e}^{y}+{\mathrm e}^{x}\right ) y^{\prime }+{\mathrm e}^{y}+y \,{\mathrm e}^{x} = 0 \]

[_exact]

1.563

10355

\[ {}x \left (3 \,{\mathrm e}^{x y}+2 \,{\mathrm e}^{-x y}\right ) \left (y^{\prime } x +y\right )+1 = 0 \]

[[_homogeneous, ‘class G‘]]

280.029

10356

\[ {}\left (\ln \left (y\right )+x \right ) y^{\prime }-1 = 0 \]

[[_1st_order, _with_exponential_symmetries]]

1.184

10357

\[ {}\left (\ln \left (y\right )+2 x -1\right ) y^{\prime }-2 y = 0 \]

[[_1st_order, _with_linear_symmetries]]

1.532

10358

\[ {}x \left (2 x^{2} y \ln \left (y\right )+1\right ) y^{\prime }-2 y = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.487

10359

\[ {}x \left (y \ln \left (x y\right )+y-a x \right ) y^{\prime }-y \left (a x \ln \left (x y\right )-y+a x \right ) = 0 \]

[‘y=_G(x,y’)‘]

1.698

10360

\[ {}y^{\prime } \left (1+\sin \left (x \right )\right ) \sin \left (y\right )+\cos \left (x \right ) \left (\cos \left (y\right )-1\right ) = 0 \]

[_separable]

4.668

10361

\[ {}\left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime }+y \cos \left (x \right )+\sin \left (y\right ) = 0 \]

[_exact]

8.838

10362

\[ {}x y^{\prime } \cot \left (\frac {y}{x}\right )+2 x \sin \left (\frac {y}{x}\right )-y \cot \left (\frac {y}{x}\right ) = 0 \]

[[_homogeneous, ‘class A‘]]

4.388

10363

\[ {}y^{\prime } \cos \left (y\right )-\cos \left (x \right ) \sin \left (y\right )^{2}-\sin \left (y\right ) = 0 \]

unknown

44.154

10364

\[ {}y^{\prime } \cos \left (y\right )+x \sin \left (y\right ) \cos \left (y\right )^{2}-\sin \left (y\right )^{3} = 0 \]

[‘y=_G(x,y’)‘]

50.513

10365

\[ {}y^{\prime } \left (\cos \left (y\right )-\sin \left (\alpha \right ) \sin \left (x \right )\right ) \cos \left (y\right )+\left (\cos \left (x \right )-\sin \left (\alpha \right ) \sin \left (y\right )\right ) \cos \left (x \right ) = 0 \]

unknown

39.815

10366

\[ {}x y^{\prime } \cos \left (y\right )+\sin \left (y\right ) = 0 \]

[_separable]

3.949

10367

\[ {}\left (x \sin \left (y\right )-1\right ) y^{\prime }+\cos \left (y\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4.596

10368

\[ {}\left (x \cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime }-y \sin \left (x \right )+\sin \left (y\right ) = 0 \]

[_exact]

29.114

10369

\[ {}\left (x^{2} \cos \left (y\right )+2 y \sin \left (x \right )\right ) y^{\prime }+2 x \sin \left (y\right )+y^{2} \cos \left (x \right ) = 0 \]

[_exact]

37.512

10370

\[ {}x y^{\prime } \ln \left (x \right ) \sin \left (y\right )+\cos \left (y\right ) \left (1-x \cos \left (y\right )\right ) = 0 \]

[‘y=_G(x,y’)‘]

48.530

10371

\[ {}y^{\prime } \sin \left (y\right ) \cos \left (x \right )+\cos \left (y\right ) \sin \left (x \right ) = 0 \]

[_separable]

2.720

10372

\[ {}3 y^{\prime } \sin \left (x \right ) \sin \left (y\right )+5 \cos \left (x \right )^{4} y = 0 \]

[_separable]

4.853

10373

\[ {}y^{\prime } \cos \left (a y\right )-b \left (1-c \cos \left (a y\right )\right ) \sqrt {\cos \left (a y\right )^{2}-1+c \cos \left (a y\right )} = 0 \]

[_quadrature]

87.668

10374

\[ {}\left (x \sin \left (x y\right )+\cos \left (x +y\right )-\sin \left (y\right )\right ) y^{\prime }+y \sin \left (x y\right )+\cos \left (x +y\right )+\cos \left (x \right ) = 0 \]

[_exact]

39.335

10375

\[ {}\left (x^{2} y \sin \left (x y\right )-4 x \right ) y^{\prime }+x y^{2} \sin \left (x y\right )-y = 0 \]

[[_homogeneous, ‘class G‘]]

38.639

10376

\[ {}\left (-y+y^{\prime } x \right ) \cos \left (\frac {y}{x}\right )^{2}+x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

7.938

10377

\[ {}\left (y \sin \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime }-\left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

7.187

10378

\[ {}\left (y f \left (x^{2}+y^{2}\right )-x \right ) y^{\prime }+y+x f \left (x^{2}+y^{2}\right ) = 0 \]

[[_1st_order, _with_linear_symmetries]]

2.430

10379

\[ {}f \left (x^{2}+a y^{2}\right ) \left (a y y^{\prime }+x \right )-y-y^{\prime } x = 0 \]

[_exact]

8.521

10380

\[ {}f \left (x^{c} y\right ) \left (b x y^{\prime }-a \right )-x^{a} y^{b} \left (y^{\prime } x +c y\right ) = 0 \]

[NONE]

4.441

10381

\[ {}{y^{\prime }}^{2}+a y+b \,x^{2} = 0 \]

[[_homogeneous, ‘class G‘]]

2.329

10382

\[ {}{y^{\prime }}^{2}+y^{2}-a^{2} = 0 \]

[_quadrature]

0.681

10383

\[ {}{y^{\prime }}^{2}+y^{2}-f \left (x \right )^{2} = 0 \]

[‘y=_G(x,y’)‘]

3.610

10384

\[ {}{y^{\prime }}^{2}-y^{3}+y^{2} = 0 \]

[_quadrature]

3.812

10385

\[ {}{y^{\prime }}^{2}-4 y^{3}+a y+b = 0 \]

[_quadrature]

2.016

10386

\[ {}{y^{\prime }}^{2}+a^{2} y^{2} \left (\ln \left (y\right )^{2}-1\right ) = 0 \]

[_quadrature]

3.300

10387

\[ {}{y^{\prime }}^{2}-2 y^{\prime }-y^{2} = 0 \]

[_quadrature]

0.372

10388

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b x = 0 \]

[_quadrature]

0.234

10389

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b y = 0 \]

[_quadrature]

0.806

10390

\[ {}{y^{\prime }}^{2}+\left (x -2\right ) y^{\prime }-y+1 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.484

10391

\[ {}{y^{\prime }}^{2}+\left (x +a \right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.481

10392

\[ {}{y^{\prime }}^{2}-\left (x +1\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.448

10393

\[ {}{y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.437

10394

\[ {}{y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.424

10395

\[ {}{y^{\prime }}^{2}+a x y^{\prime }-b \,x^{2}-c = 0 \]

[_quadrature]

0.500

10396

\[ {}{y^{\prime }}^{2}+a x y^{\prime }+b y+c \,x^{2} = 0 \]

[[_homogeneous, ‘class G‘]]

3.720

10397

\[ {}{y^{\prime }}^{2}+\left (a x +b \right ) y^{\prime }-a y+c = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.537

10398

\[ {}{y^{\prime }}^{2}-2 x^{2} y^{\prime }+2 x y = 0 \]

[[_homogeneous, ‘class G‘]]

2.474

10399

\[ {}{y^{\prime }}^{2}+a \,x^{3} y^{\prime }-2 a \,x^{2} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

3.270

10400

\[ {}{y^{\prime }}^{2}+\left (y^{\prime }-y\right ) {\mathrm e}^{x} = 0 \]

[[_1st_order, _with_linear_symmetries]]

3.753