# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}y^{\prime \prime }+a y^{\prime } \tan \left (x \right )+b y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.914 |
|
\[
{}y^{\prime \prime }+2 a y^{\prime } \cot \left (a x \right )+\left (-a^{2}+b^{2}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.005 |
|
\[
{}y^{\prime \prime }+a p^{\prime \prime }\left (x \right ) y^{\prime }+\left (a +b p \left (x \right )-4 n a p \left (x \right )^{2}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.306 |
|
\[
{}y^{\prime \prime }+\frac {\left (11 \operatorname {WeierstrassP}\left (x , a , b\right ) \operatorname {WeierstrassPPrime}\left (x , a , b\right )-6 \operatorname {WeierstrassP}\left (x , a , b\right )^{2}+\frac {a}{2}\right ) y^{\prime }}{\operatorname {WeierstrassPPrime}\left (x , a , b\right )+\operatorname {WeierstrassP}\left (x , a , b\right )^{2}}+\frac {\left (\operatorname {WeierstrassPPrime}\left (x , a , b\right )^{2}-\operatorname {WeierstrassP}\left (x , a , b\right )^{2} \operatorname {WeierstrassPPrime}\left (x , a , b\right )-\operatorname {WeierstrassP}\left (x , a , b\right ) \left (6 \operatorname {WeierstrassP}\left (x , a , b\right )^{2}-\frac {a}{2}\right )\right ) y}{\operatorname {WeierstrassPPrime}\left (x , a , b\right )+\operatorname {WeierstrassP}\left (x , a , b\right )^{2}} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
43.100 |
|
\[
{}y^{\prime \prime }+f \left (x \right ) y^{\prime }+g \left (x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.227 |
|
\[
{}y^{\prime \prime }+f \left (x \right ) y^{\prime }+\left (f^{\prime }\left (x \right )+a \right ) y-g \left (x \right ) = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
0.224 |
|
\[
{}y^{\prime \prime }+\left (a f \left (x \right )+b \right ) y^{\prime }+\left (c f \left (x \right )+d \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.254 |
|
\[
{}y^{\prime \prime }+f \left (x \right ) y^{\prime }+\left (\frac {f \left (x \right )^{2}}{4}+\frac {f^{\prime }\left (x \right )}{2}+a \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.971 |
|
\[
{}y^{\prime \prime }-\frac {a f^{\prime }\left (x \right ) y^{\prime }}{f \left (x \right )}+b f \left (x \right )^{2 a} y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.004 |
|
\[
{}y^{\prime \prime }-\left (\frac {f^{\prime }\left (x \right )}{f \left (x \right )}+2 a \right ) y^{\prime }+\left (\frac {a f^{\prime }\left (x \right )}{f \left (x \right )}+a^{2}-b^{2} f \left (x \right )^{2}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.470 |
|
\[
{}y^{\prime \prime }+\frac {f \left (x \right ) f^{\prime \prime \prime }\left (x \right ) y^{\prime }}{f \left (x \right )^{2}+b^{2}}-\frac {a^{2} {f^{\prime }\left (x \right )}^{2} y}{f \left (x \right )^{2}+b^{2}} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.572 |
|
\[
{}y^{\prime \prime }-\left (\frac {2 f^{\prime }\left (x \right )}{f \left (x \right )}+\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}-\frac {g^{\prime }\left (x \right )}{g \left (x \right )}\right ) y^{\prime }+\left (\frac {f^{\prime }\left (x \right ) \left (\frac {2 f^{\prime }\left (x \right )}{f \left (x \right )}+\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}-\frac {g^{\prime }\left (x \right )}{g \left (x \right )}\right )}{f \left (x \right )}-\frac {f^{\prime \prime }\left (x \right )}{f \left (x \right )}-\frac {v^{2} {g^{\prime }\left (x \right )}^{2}}{g \left (x \right )^{2}}+{g^{\prime }\left (x \right )}^{2}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.796 |
|
\[
{}y^{\prime \prime }-\left (\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}+\frac {\left (2 v -1\right ) g^{\prime }\left (x \right )}{g \left (x \right )}+\frac {2 h^{\prime }\left (x \right )}{h \left (x \right )}\right ) y^{\prime }+\left (\frac {h^{\prime }\left (x \right ) \left (\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}+\frac {\left (2 v -1\right ) g^{\prime }\left (x \right )}{g \left (x \right )}+\frac {2 h^{\prime }\left (x \right )}{h \left (x \right )}\right )}{h \left (x \right )}-\frac {h^{\prime \prime }\left (x \right )}{h \left (x \right )}+{g^{\prime }\left (x \right )}^{2}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.886 |
|
\[
{}4 y^{\prime \prime }+9 y x = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.822 |
|
\[
{}4 y^{\prime \prime }-\left (x^{2}+a \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.296 |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime } \tan \left (x \right )-\left (5 \tan \left (x \right )^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.840 |
|
\[
{}a y^{\prime \prime }-\left (a b +c +x \right ) y^{\prime }+\left (b \left (x +c \right )+d \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.727 |
|
\[
{}a^{2} y^{\prime \prime }+a \left (a^{2}-2 b \,{\mathrm e}^{-a x}\right ) y^{\prime }+b^{2} {\mathrm e}^{-2 a x} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.568 |
|
\[
{}x \left (y^{\prime \prime }+y\right )-\cos \left (x \right ) = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.898 |
|
\[
{}x y^{\prime \prime }+\left (x +a \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.326 |
|
\[
{}x y^{\prime \prime }+y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
0.776 |
|
\[
{}x y^{\prime \prime }+y^{\prime }+a y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.710 |
|
\[
{}x y^{\prime \prime }+y^{\prime }+l x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.890 |
|
\[
{}x y^{\prime \prime }+y^{\prime }+\left (x +a \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.500 |
|
\[
{}x y^{\prime \prime }-y^{\prime }+a y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.801 |
|
\[
{}x y^{\prime \prime }-y^{\prime }-y a \,x^{3} = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.248 |
|
\[
{}x y^{\prime \prime }-y^{\prime }+x^{3} \left ({\mathrm e}^{x^{2}}-v^{2}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.265 |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }-y x -{\mathrm e}^{x} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.716 |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+a x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.206 |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+a \,x^{2} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.753 |
|
\[
{}x y^{\prime \prime }-2 y^{\prime }+a y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.775 |
|
\[
{}x y^{\prime \prime }+v y^{\prime }+a y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.957 |
|
\[
{}x y^{\prime \prime }+a y^{\prime }+b x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.088 |
|
\[
{}x y^{\prime \prime }+a y^{\prime }+b \,x^{\operatorname {a1}} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.117 |
|
\[
{}x y^{\prime \prime }+\left (x +b \right ) y^{\prime }+a y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.748 |
|
\[
{}x y^{\prime \prime }+\left (x +a +b \right ) y^{\prime }+a y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.835 |
|
\[
{}x y^{\prime \prime }-y^{\prime } x -y-x \left (x +1\right ) {\mathrm e}^{x} = 0
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
1.168 |
|
\[
{}x y^{\prime \prime }-y^{\prime } x -a y = 0
\] |
[_Laguerre] |
✗ |
0.339 |
|
\[
{}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0
\] |
[_Laguerre] |
✓ |
0.990 |
|
\[
{}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }-2 \left (x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.930 |
|
\[
{}x y^{\prime \prime }+\left (b -x \right ) y^{\prime }-a y = 0
\] |
[_Laguerre] |
✗ |
0.727 |
|
\[
{}x y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }-y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.360 |
|
\[
{}x y^{\prime \prime }-\left (3 x -2\right ) y^{\prime }-\left (2 x -3\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.473 |
|
\[
{}x y^{\prime \prime }+\left (a x +b +n \right ) y^{\prime }+n a y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.959 |
|
\[
{}x y^{\prime \prime }-\left (a +b \right ) \left (x +1\right ) y^{\prime }+a b x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
1.061 |
|
\[
{}x y^{\prime \prime }+\left (\left (a +b \right ) x +m +n \right ) y^{\prime }+\left (a b x +a n +b m \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
1.280 |
|
\[
{}x y^{\prime \prime }-2 \left (a x +b \right ) y^{\prime }+\left (a^{2} x +2 a b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.135 |
|
\[
{}x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
1.658 |
|
\[
{}x y^{\prime \prime }-\left (x^{2}-x \right ) y^{\prime }+\left (x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.290 |
|
\[
{}x y^{\prime \prime }-\left (x^{2}-x -2\right ) y^{\prime }-x \left (x +3\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.215 |
|
\[
{}x y^{\prime \prime }-\left (2 a \,x^{2}+1\right ) y^{\prime }+b \,x^{3} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.015 |
|
\[
{}x y^{\prime \prime }-2 \left (x^{2}-a \right ) y^{\prime }+2 n x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.931 |
|
\[
{}x y^{\prime \prime }+\left (4 x^{2}-1\right ) y^{\prime }-4 x^{3} y-4 x^{5} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.858 |
|
\[
{}x y^{\prime \prime }+\left (2 a \,x^{3}-1\right ) y^{\prime }+\left (a^{2} x^{3}+a \right ) x^{2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.028 |
|
\[
{}x y^{\prime \prime }+\left (2 a x \ln \left (x \right )+1\right ) y^{\prime }+\left (a^{2} x \ln \left (x \right )^{2}+a \ln \left (x \right )+a \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.165 |
|
\[
{}x y^{\prime \prime }+\left (f \left (x \right ) x +2\right ) y^{\prime }+f \left (x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.739 |
|
\[
{}\left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+\left (3 x -6\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.095 |
|
\[
{}2 x y^{\prime \prime }+y^{\prime }+a y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.231 |
|
\[
{}2 x y^{\prime \prime }-\left (x -1\right ) y^{\prime }+a y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.554 |
|
\[
{}2 x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+a y = 0
\] |
[_Laguerre] |
✗ |
0.547 |
|
\[
{}\left (2 x -1\right ) y^{\prime \prime }-\left (3 x -4\right ) y^{\prime }+\left (x -3\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.127 |
|
\[
{}4 x y^{\prime \prime }-\left (x +a \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.313 |
|
\[
{}4 x y^{\prime \prime }+2 y^{\prime }-y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.105 |
|
\[
{}4 x y^{\prime \prime }+4 y^{\prime }-\left (x +2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.956 |
|
\[
{}4 x y^{\prime \prime }+4 y-\left (x +2\right ) y+l y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.349 |
|
\[
{}4 x y^{\prime \prime }+4 m y^{\prime }-\left (x -2 m -4 n \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.609 |
|
\[
{}16 x y^{\prime \prime }+8 y^{\prime }-\left (x +a \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.487 |
|
\[
{}a x y^{\prime \prime }+b y^{\prime }+c y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.918 |
|
\[
{}a x y^{\prime \prime }+\left (b x +3 a \right ) y^{\prime }+3 b y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.231 |
|
\[
{}5 \left (a x +b \right ) y^{\prime \prime }+8 a y^{\prime }+c \left (a x +b \right )^{{1}/{5}} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.551 |
|
\[
{}2 a x y^{\prime \prime }+\left (b x +a \right ) y^{\prime }+c y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.689 |
|
\[
{}2 a x y^{\prime \prime }+\left (b x +3 a \right ) y^{\prime }+c y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.702 |
|
\[
{}\left (\operatorname {a2} x +\operatorname {b2} \right ) y^{\prime \prime }+\left (\operatorname {a1} x +\operatorname {b1} \right ) y^{\prime }+\left (\operatorname {a0} x +\operatorname {b0} \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
5.864 |
|
\[
{}x^{2} y^{\prime \prime }-6 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.614 |
|
\[
{}x^{2} y^{\prime \prime }-12 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.610 |
|
\[
{}x^{2} y^{\prime \prime }+a y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.852 |
|
\[
{}x^{2} y^{\prime \prime }+\left (a x +b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.750 |
|
\[
{}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.382 |
|
\[
{}x^{2} y^{\prime \prime }-\left (a \,x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
3.818 |
|
\[
{}x^{2} y^{\prime \prime }+\left (a^{2} x^{2}-6\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.897 |
|
\[
{}x^{2} y^{\prime \prime }+\left (a \,x^{2}-v \left (v -1\right )\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.022 |
|
\[
{}x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.532 |
|
\[
{}x^{2} y^{\prime \prime }+\left (a \,x^{k}-b \left (b -1\right )\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.847 |
|
\[
{}x^{2} y^{\prime \prime }+\frac {y}{\ln \left (x \right )}-x \,{\mathrm e}^{x} \left (2+x \ln \left (x \right )\right ) = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
0.156 |
|
\[
{}x^{2} y^{\prime \prime }+a y^{\prime }-y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.288 |
|
\[
{}x^{2} y^{\prime \prime }+a y^{\prime }-\left (b^{2} x^{2}+a b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.474 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -y-a \,x^{2} = 0
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
1.549 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +a y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.149 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -\left (x +a \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.756 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (-v^{2}+x^{2}\right ) y = 0
\] |
[_Bessel] |
✓ |
0.984 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (-v^{2}+x^{2}\right ) y-f \left (x \right ) = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.009 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (l \,x^{2}-v^{2}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.942 |
|
\[
{}x^{2} y^{\prime \prime }+\left (x +a \right ) y^{\prime }-y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.304 |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +y-3 x^{3} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.496 |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +\left (a \,x^{m}+b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.926 |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
0.691 |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x +\left (a x -b^{2}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.819 |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x +\left (a \,x^{2}+b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.961 |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x +\left (l \,x^{2}+a x -n \left (n +1\right )\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.628 |
|
\[
{}x^{2} y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+a y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.478 |
|